(本題滿(mǎn)分14分)已知二次函數(shù)

(1)若a>b>c, 且f(1)=0,證明fx)的圖象與x軸有2個(gè)交點(diǎn);

(2)若 對(duì),方程有2個(gè)不等實(shí)根,;

(3)在(1)的條件下,是否存在m∈R,使fm)= a成立時(shí),fm+3)為正數(shù),若

存在,證明你的結(jié)論,若不存在,說(shuō)明理由.

 

【答案】

(1)略(2)略(3)即存在這樣的實(shí)數(shù)m使fm)= a成立時(shí),fm+3)為正數(shù).

 

【解析】解:。1) 的圖象與x軸有兩個(gè)交點(diǎn).

(2)令,則是二次函數(shù).

       

        的根必有一個(gè)屬于.

(3)的一個(gè)根,由韋達(dá)定理知另一根為,1+=,=-1

 

∵ a>b>c,a>0  ∴ <1  ∴  >-1   =-1>-2   

       ∵ 在(1,+∞)單調(diào)遞增,

,即存在這樣的實(shí)數(shù)m使fm)= a成立時(shí),fm+3)為正數(shù).

 

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分14分)已知向量 ,函數(shù).   (Ⅰ)求的單調(diào)增區(qū)間;  (II)若在中,角所對(duì)的邊分別是,且滿(mǎn)足:,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分14分)已知,且以下命題都為真命題:

命題 實(shí)系數(shù)一元二次方程的兩根都是虛數(shù);

命題 存在復(fù)數(shù)同時(shí)滿(mǎn)足.

求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年吉林省高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分14分)已知函數(shù)

(1)若,求x的值;

(2)若對(duì)于恒成立,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題

(本題滿(mǎn)分14分)

已知橢圓的離心率為,過(guò)坐標(biāo)原點(diǎn)且斜率為的直線(xiàn)相交于、,

⑴求、的值;

⑵若動(dòng)圓與橢圓和直線(xiàn)都沒(méi)有公共點(diǎn),試求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題

((本題滿(mǎn)分14分)

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE = x,G是BC的中點(diǎn).沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).

(1)當(dāng)x=2時(shí),求證:BD⊥EG ;

(2)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為,

的最大值;

(3)當(dāng)取得最大值時(shí),求二面角D-BF-C的余弦值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案