(理)已知點A(3,
3
),O為坐標(biāo)原點,點P(x,y)的坐標(biāo)x,y滿足
3
x-y≤0
x-
3
y+2≥0
y≥0
,則向量
OP
在向量
OA
方向上的投影的取值范圍是
 
考點:簡單線性規(guī)劃,平面向量數(shù)量積的運算
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用向量投影的定義計算z的表達式,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:設(shè)z表示向量
OP
OA
方向上的投影,
∴z=
OP
OA
|
OA
|
=
3x+
3
y
2
3
=
3
2
x+
1
2
y
,
即y=-
3
x+2z
,
作出不等式組對應(yīng)的平面區(qū)域如圖:
平移直線y=-
3
x+2z
,當(dāng)y=-
3
x+2z
經(jīng)過點B時直線y=-
3
x+2z
的截距最大,此時z最大,
當(dāng)y=-
3
x+2z
經(jīng)過點C(-2,0)時,直線的截距最小,此時z最。藭rzmin=
3
,
3
x-y=0
x-
3
y+2=0
,得
x=1
y=
3
,即B(1,
3
),
此時最大值z=
3
2
+
3
2
=
3
,
故z的取值范圍是[-
3
3
],
故答案為:[-
3
3
]
點評:本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)z的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的上頂點為B2,右焦點為F2,△B2OF2為等腰直角三角形(O為坐標(biāo)原點),拋物線y2=4
2
x的焦點恰好是該橢圓的右頂點.
(1)求橢圓C的方程;
(2)若點B1,B2分別是橢圓的下頂點和上頂點,點P是橢圓上異與B1,B2的點,求證:直線PB1和直線PB2的斜率之積為定值.
(3)已知圓M:x2+y2=
2
3
的切線l與橢圓相交于C,D兩點,那么以CD為直徑的圓是否經(jīng)過定點?如果是,求出定點的坐標(biāo);如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)集A={a1,a2,…,an},其中0≤a1<a2<…<an,且n≥3,若對?i,j(1≤i≤j≤n),aj+ai與aj-ai兩數(shù)中至少有一個屬于A,則稱數(shù)集A具有性質(zhì)P.
(Ⅰ)分別判斷數(shù)集{0,1,3}與數(shù)集{0,2,4,6}是否具有性質(zhì)P,說明理由;
(Ⅱ)已知數(shù)集A={a1,a2,…,a8}具有性質(zhì)P.
①求證:0∈A;
②判斷數(shù)列a1,a2,…,a8是否為等差數(shù)列,若是等差數(shù)列,請證明;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(sinθ-
3
5
)+(cosθ-
4
5
)i是純虛數(shù),則tanθ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
OA
=(1,cosθ),
OB
=(-
1
2
,tanθ),θ∈(
π
2
2
),且
OA
OB
,則θ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,an=an-1+n,n≥2,為計算這個數(shù)列前10項的和S,現(xiàn)給出該問題算法的程序框圖(如圖所示),則圖中判斷框(1)處合適的語句是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項a1=a,其前n和為Sn,且滿足Sn+Sn-1=3n2(n≥2).若對任意的n∈N*,an<an+1恒成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在面積為4cm2的扇形中,扇形周長的最小值為
 
cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組命題:
(1)p:a+b=2,q:直線x+y=0與圓(x-a)2+(y-b)2=2相切;
(2)p:|x|=x,q:x2+x≥0;
(3)設(shè)l,m均為直線,σ為平面,其中l(wèi)?σ,m⊆σ,p:l∥σ,q:l∥m.
(4)p:數(shù)列l(wèi)og3n,log3(n+1),log3(n+3),(n∈N*)成等差數(shù)列;q:數(shù)列(
1
3
)n
,
3
3n
,3n(n∈N*)成等比數(shù)列.
其中,p是q的充分不必要條件的是(  )
A、(1)(2)
B、(1)(4)
C、(1)(3)
D、(2)(3)(4)

查看答案和解析>>

同步練習(xí)冊答案