1.中國有個名句“運籌帷幄之中,決勝千里之外”.其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌,古代是用算籌來進行計算,算籌是將幾寸長的小竹棍擺在平面上進行運算,算籌的擺放形式有縱橫兩種形式,如表:

表示一個多位數(shù)時,像阿拉伯計數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個位,百位,萬位數(shù)用縱式表示,十位,千位,十萬位用橫式表示,以此類推,例如6613用算籌表示就是:,則5288用算籌式可表示為

分析 根據(jù)新定義直接判斷即可.

解答 解:由題意各位數(shù)碼的籌式需要縱橫相間,個位,百位,萬位數(shù)用縱式表示,十位,千位,十萬位用橫式表示,則5288用算籌可表示為,
故答案為

點評 本題考查了新定義的運用,考查學生對圖形的認識,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

11.如圖,在邊長為2的正方形ABCD中,M是AB的中點,則過C,M,D三點的拋物線與CD圍成陰影部分,在正方形ABCD中任取一點P,則點P恰好取自陰影部分的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設i是虛數(shù)單位,若$z=\frac{2}{-1+i}$,則復數(shù)z的虛部是( 。
A.1B.iC.-1D.-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在平面直角坐標系中,不等式組$\left\{\begin{array}{l}3x-2y≥0\\ 3x-y-3≤0\\ y≥0\end{array}\right.$表示的平面區(qū)域的面積是( 。
A.1B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=(x2+ax-a)•e1-x,其中a∈R.
(Ⅰ)求函數(shù)f'(x)的零點個數(shù);
(Ⅱ)證明:a≥0是函數(shù)f(x)存在最小值的充分而不必要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設a,b≠0,則“a>b”是“$\frac{1}{a}<\frac{1}$”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知z=m-1+(m+2)i在復平面內(nèi)對應的點在第二象限,則實數(shù)m的取值范圍是(  )
A.(-1,2)B.(-2,1)C.(1,+∞)D.(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=(2a-1)x-$\frac{1}{2}$cos2x-a(sinx+cosx)在[0,$\frac{π}{2}$]上單調(diào)遞增,則實數(shù)a的取值范圍為( 。
A.(-∞,$\frac{1}{3}$]B.[$\frac{1}{3}$,1]C.[0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠ABC=60°,PA=PB=AB=2,點N為AB的中點.,
(Ⅰ)證明:AB⊥PC;
(Ⅱ)設點M在線段PD上,且PB∥平面MNC,若平面PAB⊥平面ABCD,求二面角M-NC-P的大。

查看答案和解析>>

同步練習冊答案