已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,與雙曲線x2-y2=1的漸近線有四個(gè)交點(diǎn),以這四個(gè)交點(diǎn)為頂點(diǎn)的四邊形的面積為16,則橢圓C的方程為( 。
A.
x2
8
+
y2
2
=1
B.
x2
12
+
y2
6
=1
C.
x2
16
+
y2
4
=1
D.
x2
20
+
y2
5
=1
由題意,雙曲線x2-y2=1的漸近線方程為y=±x
∵以這四個(gè)交點(diǎn)為頂點(diǎn)的四邊形的面積為16,故邊長(zhǎng)為4,
∴(2,2)在橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)上
4
a2
+
4
b2
=1

e=
3
2

a2-b2
a2
=
3
4

∴a2=4b2
∴a2=20,b2=5
∴橢圓方程為:
x2
20
+
y2
5
=1
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在以點(diǎn)O為圓心,AB為直徑的半圓中,D為半圓弧的中心,P為半圓弧上一點(diǎn),且AB=4,∠POB=30°,雙曲線C以A,B為焦點(diǎn)且經(jīng)過(guò)點(diǎn)P.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求雙曲線C的方程;
(2)設(shè)過(guò)點(diǎn)D的直線l與雙曲線C相交于不同兩點(diǎn)E、F,若△OEF的面積不小于2
2
,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,橢圓C的上、下頂點(diǎn)分別為A1,A2,左、右頂點(diǎn)分別為B1,B2,左、右焦點(diǎn)分別為F1,F(xiàn)2.原點(diǎn)到直線A2B2的距離為
2
5
5

(1)求橢圓C的方程;
(2)過(guò)原點(diǎn)且斜率為
1
2
的直線l,與橢圓交于E,F(xiàn)點(diǎn),試判斷∠EF2F是銳角、直角還是鈍角,并寫(xiě)出理由;
(3)P是橢圓上異于A1,A2的任一點(diǎn),直線PA1,PA2,分別交x軸于點(diǎn)N,M,若直線OT與過(guò)點(diǎn)M,N的圓G相切,切點(diǎn)為T.證明:線段OT的長(zhǎng)為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上,直線x+y-1=0與拋物線相交于A、B兩點(diǎn),且|AB|=
8
6
11

(1)求拋物線的方程;
(2)在x軸上是否存在一點(diǎn)C,使△ABC為正三角形?若存在,求出C點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

以拋物線y2=4x的焦點(diǎn)為右焦點(diǎn)的橢圓,上頂點(diǎn)為B2,右頂點(diǎn)為A2,左、右焦點(diǎn)為F1、F2,且|
F1B2
|cos∠B2F1F2=
3
3
|
OB2
|,過(guò)點(diǎn)D(0,2)的直線l,斜率為k(k>0),l與橢圓交于M,N兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若M,N的中點(diǎn)為H,且
OH
A2B2
,求出斜率k的值;
(3)在x軸上是否存在點(diǎn)Q(m,0),使得以QM,QN為鄰邊的四邊形是個(gè)菱形?如果存在,求出m的范圍;否則,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上的點(diǎn)P到左右兩焦點(diǎn)F1,F(xiàn)2的距離之和為2
2
,離心率為
2
2

(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)右焦點(diǎn)F2的直線l交橢圓于A、B兩點(diǎn),若y軸上一點(diǎn)M(0,
3
7
)
滿足|MA|=|MB|,求直線l的斜率k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:
x2
2
+y2=1
的左、右焦點(diǎn)分別為F1,F(xiàn)2,下頂點(diǎn)為A,點(diǎn)P是橢圓上任一點(diǎn),⊙M是以PF2為直徑的圓.
(Ⅰ)當(dāng)⊙M的面積為
π
8
時(shí),求PA所在直線的方程;
(Ⅱ)當(dāng)⊙M與直線AF1相切時(shí),求⊙M的方程;
(Ⅲ)求證:⊙M總與某個(gè)定圓相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓C1x2+y2=
4
5
,直線l:y=x+m(m>0)與圓C1相切,且交橢圓C2
x2
a2
+
y2
b2
=1(a>b>0)
于A1,B1兩點(diǎn),c是橢圓C2的半焦距,c=
3
b

(1)求m的值;
(2)O為坐標(biāo)原點(diǎn),若
OA1
OB1
,求橢圓C2的方程;
(3)在(2)的條件下,設(shè)橢圓C2的左、右頂點(diǎn)分別為A,B,動(dòng)點(diǎn)S(x1,y1)∈C2(y1>0)直線AS,BS與直線x=
34
15
分別交于M,N兩點(diǎn),求線段MN的長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)圓外一點(diǎn)作圓的切線為切點(diǎn)),再作割線分別交圓于、, 若
AC=8,BC=9,則AB=________.

查看答案和解析>>

同步練習(xí)冊(cè)答案