已知數(shù)列{an}的首項(xiàng)a1=b(b≠0),它的前n項(xiàng)的和Sn=a1+a2+…+an(n≥1),并且S1,S2,Sn,…是一個(gè)等比數(shù)列,其公比為p(p≠0且|p|<1),
(1)證明:a2,a3,a3,…an,…(即{an}從第二項(xiàng)起)是一個(gè)等比數(shù)列;
(2)設(shè)Wn=a1S1+a2S2+a3S3+…+anSn(n≥1),求(用b,p表示).
【答案】分析:(1)由題前n項(xiàng)的和Sn是一個(gè)等比數(shù)列,利用an與Sn的關(guān)系,求出an進(jìn)而可證.
(2)先判斷{anSn}是什么數(shù)列,再求和進(jìn)而求極限得解.
解答:解:(1)證明:由已知條件得S1=a1=b.
Sn=S1pn-1=bpn-1(n≥1)
因?yàn)楫?dāng)n≥2時(shí),Sn=a1+a2++an-1+an=Sn-1+an,所以
an=Sn-Sn-1=bpn-2(p-1)(n≥2)
從而
因此a2,a3,a3,an,是一個(gè)公比為p的等比數(shù)列
(2)當(dāng)n≥2時(shí),
且由已知條件可知p2<1,
因此數(shù)列a1S1,a2S2,a3S3,anSn是公比為p2<1的無窮等比數(shù)列,于是
從而

=
=
點(diǎn)評(píng):(1)考查數(shù)列的證明,注意:從從第二項(xiàng)開始為等比.
(2)考查數(shù)列求和求極限,注意:1:數(shù)列{anSn}從第二項(xiàng)開始為等比數(shù)列,求和時(shí)不要忘記第一項(xiàng). 2:記住無窮遞降等比數(shù)列前n項(xiàng)和極限公式即{an}等比-1<q<1且q≠0時(shí)Sn=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=
1
2
,前n項(xiàng)和Sn=n2an(n≥1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)b1=0,bn=
Sn-1
Sn
(n≥2)
,Tn為數(shù)列{bn}的前n項(xiàng)和,求證:Tn
n2
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項(xiàng)為a1=2,前n項(xiàng)和為Sn,且對(duì)任意的n∈N*,當(dāng)n≥2,時(shí),an總是3Sn-4與2-
52
Sn-1
的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(n+1)an,Tn是數(shù)列{bn}的前n項(xiàng)和,n∈N*,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•江門一模)已知數(shù)列{an}的首項(xiàng)a1=1,若?n∈N*,an•an+1=-2,則an=
1,n是正奇數(shù)
-2,n是正偶數(shù)
1,n是正奇數(shù)
-2,n是正偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項(xiàng)為a1=3,通項(xiàng)an與前n項(xiàng)和sn之間滿足2an=Sn•Sn-1(n≥2).
(1)求證:數(shù)列{
1Sn
}
是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)求數(shù)列{an}中的最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=
2
3
,an+1=
2an
an+1
,n∈N+
(Ⅰ)設(shè)bn=
1
an
-1
證明:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)數(shù)列{
n
bn
}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案