(本小題滿分12分)
如圖,在直角坐標系中,已知橢圓的離心率,左、右兩個焦點分別為、。過右焦點且與軸垂直的直線與橢圓相交、兩點,且
(1)求橢圓的方程;
(2)設(shè)橢圓的左頂點為,下頂點為,動點滿足,試求點的軌跡方程,使點關(guān)于該軌跡的對稱點落在橢圓上.
                                    
 ,P的軌跡方程為
(1)∵軸,∴,由橢圓的定義得:
,∴……………………2分
,∴,∵,∴,,

∴所求橢圓的方程為……………………5分
(2)由(1)知點,點,設(shè)點的坐標為,
,,
,
∴點的軌跡方程為……………………7分
設(shè)點B關(guān)于P的軌跡的對稱點為,則由軸對稱的性質(zhì)可得,解得,……………………9分
∵點在橢圓上,∴,整理得
,解得。
∴點P的軌跡方程為,……………………11分
經(jīng)檢驗都符合題設(shè),
∴滿足條件的點P的軌跡方程為……………………12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分) 已知橢圓C:,其相應(yīng)于焦點的準線方程為。(Ⅰ)求橢圓C的方程;(Ⅱ)已知過點傾斜角為的直線分別交橢圓C于A、B兩點,求證:(Ⅲ)過點作兩條互相垂直的直線分別交橢圓C于A、B和D、E,求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分16分)已知橢圓的左、右焦點分別為,下頂點為,點是橢圓上任一點,⊙是以為直徑的圓.

(Ⅰ)當(dāng)⊙的面積為時,求所在直線的方程;
(Ⅱ)當(dāng)⊙與直線相切時,求⊙的方程;
(Ⅲ)求證:⊙總與某個定圓相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
      橢圓短軸的左右兩個端點分別為A,B,直線與x軸、y軸分別交于兩點E,F(xiàn),交橢圓于兩點C,D。
(I)若,求直線的方程;
(II)設(shè)直線AD,CB的斜率分別為,若,求k的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

、設(shè)P是橢圓上的點,若F1、F2是橢圓的兩個焦點,則等于                        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的中心在原點,焦點在軸上,左右焦點分別為,且,點(1,)在橢圓C上.
(1)求橢圓C的方程;
(2)過的直線與橢圓相交于兩點,且的面積為,求以為圓心且與直線相切的圓的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對于橢圓,定義為橢圓的離心率,橢圓離心率的取值范圍是,離心率越大橢圓越“扁”,離心率越小則橢圓越“圓”.若兩橢圓的離心率相等,我們稱兩橢圓相似.已知橢圓與橢圓相似,則的值為  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓C:的焦點為,若點P在橢圓上,且滿足 (其中為坐標原點),則稱點P為“★點”,那么下列結(jié)論正確的是    (    )
A.橢圓上的所有點都是“★點”
B.橢圓上僅有有限個點是“★點”
C.橢圓上的所有點都不是“★點”
D.橢圓上有無窮多個點(但不是所有的點)是“★點”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如果為橢圓的左焦點,、分別為橢圓的右頂點和上頂點,為橢圓上的點,當(dāng),為橢圓的中心)時,橢圓的離心率為         

查看答案和解析>>

同步練習(xí)冊答案