已知AB、CD為異面直線,E、F分別為AC、BD的中點(diǎn),過E、F作平面α∥AB.

(1)求證:CD∥α;

(2)若AB=4,EF=7,CD=2,求AB、CD所成角的大小.

(1)證明:如圖所示,連結(jié)BC,交平面α于點(diǎn)O,

    ∵AB∥α,平面ABC∩α=EO,

    ∴AB∥EO.

    又∵E為AC中點(diǎn),

    ∴O為BC中點(diǎn).

    又BF=FD,

    ∴OF∥CD.

    ∴CD∥α.

(2)解:由題意可知,E、O、F三點(diǎn)不共線,否則AB∥CD.

    在△EOF中,EF=,OE=AB=2,OF=CD=1.由余弦定理,cos∠EOF

    ==-.

    因此異面直線AB、CD所成的角是60°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知AB與CD為異面線段,CD?平面α,AB∥α,M、N分別是線段AC與BD的中點(diǎn),求證:MN∥平面α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知AB、CD為異面線段,E、F分別為AC、BD中點(diǎn),過E、F作   平面α∥AB.
(1)求證:CD∥α;
(2)若AB=4,EF=
5
,CD=2,求AB與CD所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知AB、CD為異面直線a、b上的線段,E、F分別為AC、BD中點(diǎn),過E、F作平面α∥AB.

(1)求證:CD∥α;

(2)若AB=4,EF=,CD=2,求AB與CD所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知AB、CD為異面線段,E、F分別為AC、BD的中點(diǎn),過E、F作平面α∥AB.

(1)求證:CD∥α;

(2)若AB=4,EF=,CD=2,求AB與CD所成角的大小.

查看答案和解析>>

同步練習(xí)冊答案