已知直二面角α? ι?β,點A∈α,AC⊥ι,C為垂足,B∈β,BD⊥ι,D為垂足.若AB=2,AC=BD=1,則D到平面ABC的距離等于________.

試題分析:畫出圖形,由題意通過等體積法,求出三棱錐的體積,然后求出D到平面ABC的距離。解:由題意畫出圖形如圖:直二面角α-l-β,點A∈α,AC⊥l,C為垂足,B∈β,BD⊥l,D為垂足,若AB=2,AC=BD=1,則D到平面ABC的距離轉(zhuǎn)化為三棱錐D-ABC的高為h,

故選C.
點評:本題是基礎(chǔ)題,考查點到平面的距離,考查轉(zhuǎn)化思想的應(yīng)用,等體積法是求解點到平面距離的基本方法之一,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成直二面角,如圖二,在二面角中.

(1)求證:BD⊥AC;
(2)求D、C之間的距離;
(3)求DC與面ABD成的角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將正方體的紙盒展開如圖,直線、在原正方體的位置關(guān)系是(    )
A.平行B.垂直C.相交成60°角 D.異面且成60°角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線m、n和平面.下列四個命題中,
①若m,n,則mn;
②若m,n,m,n,則;
③若m,則m;
④若,m,m,則m,
其中正確命題的個數(shù)是(   )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,已知所在的平面,AB是⊙的直徑,,是⊙上一點,且分別為中點。

(1)求證:平面;
(2)求證:;
(3)求三棱錐-的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是兩條不同的直線,是三個不同的平面,則下列命題中真命題的是(  )
A.若,則B.若 ,則
C.若D.若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分) 本題共有2個小題,第1小題滿分6分,第2小題滿分6分.
如圖已知四棱錐的底面是邊長為6的正方形,側(cè)棱的長為8,且垂直于底面,點分別是的中點.求

(1)異面直線所成角的大。ńY(jié)果用反三角函數(shù)值表示);
(2)四棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知直三棱柱中,△為等腰直角三角形,∠ =,且,、、分別為、的中點.

(1)求證:∥平面;
(2)求證:⊥平面
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,矩形所在平面與平面垂直,,且上的動點.

(Ⅰ)當(dāng)的中點時,求證:;
(Ⅱ)若,在線段上是否存在點E,使得二面角的大小為. 若存在,確定點E的位置,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案