如圖在四面體D-ABC中,OA、0B、OC兩兩垂直,且OB=OC=3,OA=4.給出以下判斷:
①存在點D(D點除外),使得四面體D-ABC有三個面是直角三角形;
②存在點D,使得點D在四面體D-ABC外接球的球面上;
③存在唯一的點D使得DD⊥平面ABC;
④存在唯一的點D使得四面體D-ABC是正棱錐;
⑤存在無數(shù)個點D,使得AD與BC垂直且相等.
其中正確命題的序號是
①②⑤
①②⑤
(把你認(rèn)為正確命題的序號填上).
分析:對于①,取AD=4,DB=DC=3,四面體ABCD的三條棱DA、DB、DC兩兩垂直,此時點D,使四面體ABCD有三個面是直角三角形;
②先找到四面體OABC的內(nèi)接球的球心P,使半徑為r,只需PD=r即可;
③利用面面垂直,可知存在無數(shù)個點,使得DC⊥平面ABC;
④根據(jù)對稱性,可知在平面ABC的兩側(cè)均存在點D使得四面體D-ABC是正棱錐;
⑤取DB=DC,由于AB=AC,取BC中點E,可得AE⊥BC,DE⊥BC,從而BC垂直面AED,即存在點D,使CD與AB垂直并且相等,由此可得結(jié)論.
解答:解:對于①,∵四面體OABC的三條棱OA,OB,OC兩兩垂直,OB=OC=3,OA=4,∴AC=AB=5,AB=3
2
,當(dāng)四面體D-ABC與四面體O-ABC一樣時,即取AD=4,DB=DC=3,四面體ABCD的三條棱DA、DB、DC兩兩垂直,此時點D,使四面體ABCD有三個面是直角三角形,故①正確;
②先找到四面體OABC的內(nèi)接球的球心P,使半徑為r,只需PD=r即可,∴存在無數(shù)個點D,使點O在四面體ABCD的外接球面上,故②正確;
③利用面面垂直,可知存在無數(shù)個點,使得DC⊥平面ABC,故③不正確;
④根據(jù)對稱性,可知,在平面ABC的兩側(cè)均存在點D使得四面體D-ABC是正棱錐,故④不正確;
⑤取DB=DC,由于AB=AC,取BC中點E,可得AE⊥BC,DE⊥BC,從而BC垂直面AED,即存在點D,使CD與AB垂直并且相等,故⑤正確;
綜上知,正確命題的序號為①②⑤
故答案為:①②⑤
點評:本題主要考查了棱錐的結(jié)構(gòu)特征,同時考查了空間想象能力,轉(zhuǎn)化與劃歸的思想,以及構(gòu)造法的運用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四面體OABC的三條棱OA,OB,OC兩兩垂直,OA=OB=2,OC=3,D為四面體OABC外一點.給出下列命題.
①不存在點D,使四面體ABCD有三個面是直角三角形
②不存在點D,使四面體ABCD是正三棱錐
③存在點D,使CD與AB垂直并且相等
④存在無數(shù)個點D,使點O在四面體ABCD的外接球面上
其中真命題的序號是( 。
A、①②B、②③C、③D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四面體OABC的三條棱OA、OB、OC兩兩垂直,OA=OB=2,OC=3,D為四面體OABC外一點.給出下列命題.
①不存在點D,使四面體ABCD有三個面是直角三角形
②不存在點D,使四面體ABCD是正三棱錐
③存在點D,使CD與AB垂直并且相等
④存在無數(shù)個點D,使點O在四面體ABCD的外接球面上
其中真命題的序號是
③④
③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京66中高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

如圖,四面體OABC的三條棱OA,OB,OC兩兩垂直,OA=OB=2,OC=3,D為四面體OABC外一點.給出下列命題.
①不存在點D,使四面體ABCD有三個面是直角三角形
②不存在點D,使四面體ABCD是正三棱錐
③存在點D,使CD與AB垂直并且相等
④存在無數(shù)個點D,使點O在四面體ABCD的外接球面上
其中真命題的序號是( )

A.①②
B.②③
C.③
D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年高考百天仿真沖刺數(shù)學(xué)試卷6(理科)(解析版) 題型:選擇題

如圖,四面體OABC的三條棱OA,OB,OC兩兩垂直,OA=OB=2,OC=3,D為四面體OABC外一點.給出下列命題.
①不存在點D,使四面體ABCD有三個面是直角三角形
②不存在點D,使四面體ABCD是正三棱錐
③存在點D,使CD與AB垂直并且相等
④存在無數(shù)個點D,使點O在四面體ABCD的外接球面上
其中真命題的序號是( )

A.①②
B.②③
C.③
D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年廣東省清遠(yuǎn)市英德一中高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:選擇題

如圖,四面體OABC的三條棱OA,OB,OC兩兩垂直,OA=OB=2,OC=3,D為四面體OABC外一點.給出下列命題.
①不存在點D,使四面體ABCD有三個面是直角三角形
②不存在點D,使四面體ABCD是正三棱錐
③存在點D,使CD與AB垂直并且相等
④存在無數(shù)個點D,使點O在四面體ABCD的外接球面上
其中真命題的序號是( )

A.①②
B.②③
C.③
D.③④

查看答案和解析>>

同步練習(xí)冊答案