【題目】直線mx+ y﹣1=0在y軸上的截距是﹣1,且它的傾斜角是直線 =0的傾斜角的2倍,則( )
A.m=﹣ ,n=﹣2
B.m= ,n=2
C.m= ,n=﹣2
D.m=﹣ ,n=2

【答案】A
【解析】解:根據(jù)題意,設直線mx+ y﹣1=0為直線l,

另一直線的方程為 =0,

變形可得y= (x﹣3),其斜率k=

則其傾斜角為60°,

而直線l的傾斜角是直線 =0的傾斜角的2倍,

則直線l的傾斜角為120°,

且斜率k=tan120°=﹣ ,

又由l在y軸上的截距是﹣1,則其方程為y=﹣ x﹣1;

又由其一般式方程為mx+ y﹣1=0,

分析可得:m=﹣ ,n=﹣2;

所以答案是:A.

【考點精析】通過靈活運用斜截式方程,掌握直線的斜截式方程:已知直線的斜率為,且與軸的交點為則:即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖是2007年在廣州舉行的全國少數(shù)民族運動會上,七位評委為某民族舞蹈打出的分數(shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別為( )

A.84,4.84
B.84,1.6
C.85,1.6
D.85,4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC.

(1)求證:平面AEC⊥平面ABE;
(2)點F在BE上,若DE∥平面ACF,DC=CE= BC=3,求三棱錐A﹣BCF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}的前n項和為Sn , 且Sn+an=1,數(shù)列{bn}為等差數(shù)列,且b1+b2=b3=3.
(1)求Sn
(2)求數(shù)列(anbn)的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二面角α﹣l﹣β為60°,ABα,AB⊥l,A為垂足,CDβ,C∈l,∠ACD=135°,則異面直線AB與CD所成角的余弦值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設動點P在棱長為1的正方體ABCD﹣A1B1C1D1的對角線BD1上,記 =λ.當∠APC為銳角時,λ的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知長方形ABCD中,AB=2 ,AD= ,M為DC的中點.將△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求證:AD⊥BM;
(2)若點E是線段DB上的一動點,問點E在何位置時,二面角E﹣AM﹣D的余弦值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱柱ABC-A′B′C′,底面是邊長為1的正三角形,側(cè)面為全等的矩形且高為8,求一點自A點出發(fā)沿著三棱柱的側(cè)面繞行一周后到達A′點的最短路線長.

本題條件不變,求一點自A點出發(fā)沿著三棱柱的側(cè)面繞行兩周后到達A′點的最短路線長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)若函數(shù)f(x)在點(1,f(1))的切線平行于y=2x+3,求a的值.
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

同步練習冊答案