設(shè)是雙曲線的左右兩個(gè)焦點(diǎn),若在雙曲線的右支上存在一點(diǎn),使為原點(diǎn))且,則雙曲線的離心率為(     ).

A.          B.       C.       D.

 

【答案】

C

【解析】

試題分析:解:∵,∴,

=0,OP=OF2=c=OF1,∴PF1⊥PF2,Rt△PF1F2中,∵,∴∠PF1F2=30°.由雙曲線的定義得   PF1﹣PF2=2a,∴PF2=,sin30°====,∴2a=c(﹣1),∴=+1,

故選C

考點(diǎn):雙曲線的定義和雙曲線的性質(zhì)

點(diǎn)評(píng):本題考查雙曲線的定義和雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,其中,判斷△PF1F2是直角三角形是解題的關(guān)鍵.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)F是雙曲線C:x2-y2=2的左焦點(diǎn),直線l與雙曲線C交于A、B兩點(diǎn),
(1)若直線l過點(diǎn)P(1,2),且
OA
+
OB
=2
OP
,求直線l的方程.
(2)若直線l過點(diǎn)F且與雙曲線的左右兩支分別交于A、B兩點(diǎn),設(shè)
FB
FA
,當(dāng)λ∈[6,+∞)時(shí),求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•寶山區(qū)模擬)雙曲線C:
x2
a2
-
y2
b2
=1
上一點(diǎn)(2,
3
)
到左,右兩焦點(diǎn)距離的差為2.
(1)求雙曲線的方程;
(2)設(shè)F1,F(xiàn)2是雙曲線的左右焦點(diǎn),P是雙曲線上的點(diǎn),若|PF1|+|PF2|=6,求△PF1F2的面積;
(3)過(-2,0)作直線l交雙曲線C于A,B兩點(diǎn),若
OP
=
OA
+
OB
,是否存在這樣的直線l,使OAPB為矩形?若存在,求出l的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆遼寧省高二期末教學(xué)質(zhì)量測(cè)試?yán)砜茢?shù)學(xué) 題型:解答題

雙曲線上一點(diǎn)到左,右兩焦點(diǎn)距離的差為2.

(1)求雙曲線的方程;

(2)設(shè)是雙曲線的左右焦點(diǎn),是雙曲線上的點(diǎn),若,

的面積;

(3)過作直線交雙曲線兩點(diǎn),若,是否存在這樣的直線,使為矩形?若存在,求出的方程,若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè),是雙曲線的左右兩個(gè)焦點(diǎn),若在雙曲線的右支上存在一點(diǎn),使為原點(diǎn))且,則雙曲線的離心率為(      ).

A.    B.       C.      D.

查看答案和解析>>

同步練習(xí)冊(cè)答案