【題目】在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2sin θ,θ∈[0,2π).
(1)求曲線C的直角坐標(biāo)方程;
(2)在曲線C上求一點D,使它到直線l:的距離最短,并求出點D的直角坐標(biāo).
【答案】(1);(2)
【解析】
(1)利用可把圓C的極坐標(biāo)方程化為普通方程.
(2)利用圓的幾何性質(zhì)即可得到結(jié)果.
(1)由ρ=2sin θ,θ∈[0,2π),可得ρ2=2ρsin θ.
因為ρ2=x2+y2,ρsin θ=y(tǒng),
所以曲線C的直角坐標(biāo)方程為x2+(y-1)2=1.
(2)因為曲線C:x2+(y-1)2=1是以C(0,1)為圓心、1為半徑的圓,易知曲線C與直線l相離.
設(shè)點D(x0,y0),且點D到直線l:y=-x+5的距離最短,
所以曲線C在點D處的切線與直線l:y=-x+5平行.
即直線CD與l的斜率的乘積等于-1,
即×(-)=-1,又x+(y0-1)2=1,
可得x0=- (舍去)或x0=,所以y0=,
即點D的坐標(biāo)為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是遞增的等差數(shù)列,且滿足a2a4=21,a1+a5=10.
(1)求{an}的通項公式;
(2)若數(shù)列{cn}前n項和Cn=an+1,數(shù)列{bn}滿足bn=2ncn(n∈N*),求{bn}的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)關(guān)于某種設(shè)備的使用年限 (年)與所支出的維修費用 (萬元)有如下統(tǒng)計資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
已知, .
,
(1)求, ;
(2)若 與具有線性相關(guān)關(guān)系,求出線性回歸方程;
(3)估計使用年限為10年時,維修費用約是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一則“清華大學(xué)要求從 2017級學(xué)生開始,游泳達(dá)到一定標(biāo)準(zhǔn)才能畢業(yè)”的消息在體育界和教育界引起了巨大反響.其實,已有不少高校將游泳列為必修內(nèi)容.
某中學(xué)擬在高一-下學(xué)期開設(shè)游泳選修課,為了了解高--學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對100名高一新生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計 | |
男生 | 40 | ||
女生 | 30 | ||
合計 |
已知在這100人中隨機抽取1人,抽到喜歡游泳的學(xué)生的概率為.
(1).請將上述列聯(lián)表補充完整,并判斷是否可以在犯錯誤的概率不超過0.001的前提下認(rèn)為喜歡游泳與性別有關(guān).
(2)已知在被調(diào)查的學(xué)生中有6名來自高一(1) 班,其中4名喜歡游泳,現(xiàn)從這6名學(xué)生中隨機抽取2人,求恰有1人喜歡游泳的概率.
附:
0.10 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 /td> | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 由經(jīng)驗得知,在某商場付款處排隊等候付款的人數(shù)及概率如下表
排隊人數(shù) | 0 | 1 | 2 | 3 | 4 | 5人以上 |
概率 | 0.1 | 0.16 | 0.3 | 0.3 | 0.1 | 0.04 |
(1)至多有2人排隊的概率是多少?
(2)至少有2人排隊的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖的表格中,每格填上一個數(shù)字后,使每一橫行成等差數(shù)列,每一縱列成等比數(shù)列,則a+b+c的值為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知y=f(x)是定義在R上的奇函數(shù),且 為偶函數(shù),對于函數(shù)y=f(x)有下列幾種描述:①y=f(x)是周期函數(shù)②x=π是它的一條對稱軸;③(﹣π,0)是它圖象的一個對稱中心;④當(dāng) 時,它一定取最大值;其中描述正確的是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A=a1 , a2 , a3 , …,an , 其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的個數(shù).
(Ⅰ)設(shè)集合P=2,4,6,8,Q=2,4,8,16,分別求l(P)和l(Q);
(Ⅱ)若集合A=2,4,8,…,2n , 求證: ;
(Ⅲ)l(A)是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣2)ex+a(x﹣1)2 .
(1)討論f(x)的單調(diào)性;
(2)若f(x)有兩個零點,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com