【題目】已知兩點(diǎn),直線AM,BM相交于點(diǎn)M,且這兩條直線的斜率之積為.

(1)求點(diǎn)M的軌跡方程;

(2)記點(diǎn)M的軌跡為曲線C,曲線C上在第一象限的點(diǎn)P的橫坐標(biāo)為1,過點(diǎn)P的斜率不為零且互為相反數(shù)的兩條直線分別交曲線CQ,R(異于點(diǎn)P),求直線QR的斜率.

【答案】(1)(2)

【解析】

(1)設(shè)點(diǎn),通過,即可求出曲線C的方程;

(2)把代入曲線C的方程,可得,直線PQ與直線PR的斜率互為相反數(shù),設(shè)直線PQ的方程為,與橢圓方程聯(lián)立,由于是方程的一個(gè)解,所以方程的另一個(gè)解為,同理可得直線QR的斜率.

(1)設(shè)點(diǎn),因?yàn)?/span>所以

整理得點(diǎn)所在的曲線C的方程為:.

(2)由題意可得點(diǎn)

直線PQ與直線PR的斜率互為相反數(shù),設(shè)直線PQ的方程為,

與橢圓的方程聯(lián)立消去y,,

由于是方程的一個(gè)解,所以方程的另一個(gè)解為,

同理,

故直線RQ的斜率為

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是圓O的直徑,C、D是圓O上的兩個(gè)點(diǎn),CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.
(Ⅰ)求證:C是劣弧的中點(diǎn);
(Ⅱ)求證:BF=FG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中“竹九節(jié)”問題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則第6節(jié)的容積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體ABCD﹣A1B1C1D1 , 則下列說法不正確的是(
A.若點(diǎn)P在直線BC1上運(yùn)動(dòng)時(shí),三棱錐A﹣D1PC的體積不變
B.若點(diǎn)P是平面A1B1C1D1上到點(diǎn)D和C1距離相等的點(diǎn),則P點(diǎn)的軌跡是過D1點(diǎn)的直線
C.若點(diǎn)P在直線BC1上運(yùn)動(dòng)時(shí),直線AP與平面ACD1所成角的大小不變
D.若點(diǎn)P在直線BC1上運(yùn)動(dòng)時(shí),二面角P﹣AD1﹣C的大小不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍;

(Ⅱ)若,證明: ,總有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記min{x,y}= 設(shè)f(x)=min{x2 , x3},則(
A.存在t>0,|f(t)+f(﹣t)|>f(t)﹣f(﹣t)
B.存在t>0,|f(t)﹣f(﹣t)|>f(t)﹣f(﹣t)
C.存在t>0,|f(1+t)+f(1﹣t)|>f(1+t)+f(1﹣t)
D.存在t>0,|f(1+t)﹣f(1﹣t)|>f(1+t)﹣f(1﹣t)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(﹣2,0),B(0,1)在橢圓C: (a>b>0)上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)P是線段AB上的點(diǎn),直線y= x+m(m≥0)交橢圓C于M、N兩點(diǎn),若△MNP是斜邊長為 的直角三角形,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,a、b、c分別是角A、B、C的對(duì)邊,若A滿足2cos2A+cos(2A+ )=﹣
(Ⅰ)求A的值;
(Ⅱ)若c=3,△ABC的面積為3 ,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】矩形的兩條對(duì)角線相交于點(diǎn) 邊所在直線的方程為,點(diǎn)邊所在直線上.

)求邊所在直線的方程;

)求矩形外接圓的方程;

查看答案和解析>>

同步練習(xí)冊(cè)答案