(本小題滿分13分)如圖,在直三棱柱ABC—中, AB = 1,
;點D、E分別在上,且,
四棱錐與直三棱柱的體積之比為3:5。
(1)求異面直線DE與的距離;
(2)若BC =,求二面角的平面角的正切值。
|
解法一:(Ⅰ)因,且,故面,
從而,又,故是異面直線與的公垂線.
設的長度為,則四棱椎的體積為
.
而直三棱柱的體積為.
由已知條件,故,解之得.
從而.
在直角三角形中,,
又因,
故.
(Ⅱ)如答(19)圖1,過作,垂足為,連接,因,,故面.
由三垂線定理知,故為所求二面角的平面角.
在直角中,,
又因,
故,所以.
解法二:
(Ⅰ)如答(19)圖2,以點為坐標原點建立空間直角坐標系,則,,,,則,.
設,則,
又設,則,
從而,即.
又,所以是異面直線與的公垂線.
下面求點的坐標.
設,則.
因四棱錐的體積為
.
而直三棱柱的體積為.
由已知條件,故,解得,即.
從而,,.
接下來再求點的坐標.
由,有,即 (1)
又由得. (2)
聯(lián)立(1),(2),解得,,即,得.
故.
(Ⅱ)由已知,則,從而,過作,
垂足為,連接,
設,則,因為,故
……………………………………①
因且得,即
……………………………………②
聯(lián)立①②解得,,即.
則,.
.
又,故,
因此為所求二面角的平面角.又,從而,
故,為直角三角形,所以.
解法一:(Ⅰ)因,且,故面,
從而,又,故是異面直線與的公垂線.
設的長度為,則四棱椎的體積為
.
而直三棱柱的體積為.
由已知條件,故,解之得.
從而.
在直角三角形中,,
又因,
故.
(Ⅱ)如答(19)圖1,過作,垂足為,連接,因,,故面.
由三垂線定理知,故為所求二面角的平面角.
在直角中,,
又因,
故,所以.
解法二:
(Ⅰ)如答(19)圖2,以點為坐標原點建立空間直角坐標系,則,,,,則,.
設,則,
又設,則,
從而,即.
又,所以是異面直線與的公垂線.
下面求點的坐標.
設,則.
因四棱錐的體積為
.
而直三棱柱的體積為.
由已知條件,故,解得,即.
從而,,.
接下來再求點的坐標.
由,有,即 (1)
又由得. (2)
聯(lián)立(1),(2),解得,,即,得.
故.
(Ⅱ)由已知,則,從而,過作,
垂足為,連接,
設,則,因為,故
……………………………………①
因且得,即
……………………………………②
聯(lián)立①②解得,,即.
則,.
.
又,故,
因此為所求二面角的平面角.又,從而,
故,為直角三角形,所以.
科目:高中數(shù)學 來源:2015屆江西省高一第二次月考數(shù)學試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設0<x<,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題
(本小題滿分13分)已知定義域為的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調性;
(3)若對任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題
(本小題滿分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:河南省09-10學年高二下學期期末數(shù)學試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,為的中點。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年福建省高三5月月考調理科數(shù)學 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項.
(1) 求函數(shù)的表達式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com