等差數(shù)列{an}中,2a1+3a2=11,2a3=a2+a6-4,其前n項(xiàng)和為Sn.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)設(shè)數(shù)列{bn}滿足bn=,其前n項(xiàng)和為T(mén)n,求證:Tn<(n∈N*).
(1) an=2n-1     (2)見(jiàn)解析
(1)2a1+3a2=2a1+3(a1+d)=5a1+3d=11,
2a3=a2+a6-4,
即2(a1+2d)=a1+d+a1+5d-4,得d=2,
則a1=1,故an=2n-1.
(2)由(1)得Sn=n2,∴bn==
===(-),
Tn=(-+-+-+…+-+-)
=(+--)<(n∈N*).
【方法技巧】裂項(xiàng)相消法的應(yīng)用技巧
裂項(xiàng)相消法的基本思想是把數(shù)列的通項(xiàng)an分拆成an=bn+1-bn或者an=bn-bn+1或者an=bn+2-bn等,從而達(dá)到在求和時(shí)逐項(xiàng)相消的目的,在解題中要善于根據(jù)這個(gè)基本思想變換數(shù)列an的通項(xiàng)公式,使之符合裂項(xiàng)相消的條件.在裂項(xiàng)時(shí)一定要注意把數(shù)列的通項(xiàng)分拆成的兩項(xiàng)一定是某個(gè)數(shù)列中的相鄰的兩項(xiàng)或者是等距離間隔的兩項(xiàng),只有這樣才能實(shí)現(xiàn)逐項(xiàng)相消后剩下幾項(xiàng),達(dá)到求和的目的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等比數(shù)列{an}的前n項(xiàng)和為Sn,若S1、S3、S2成等差數(shù)列,則{an}的公比等于(  )
A.1B.C.-D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在公差為d的等差數(shù)列{an}中,已知a1=10,且a1,2a2+2,5a3成等比數(shù)列.
(1)求d,an;
(2)若d<0,求|a1|+|a2|+|a3|+…+|an|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

從盛滿2升純酒精的容器里倒出1升純酒精,然后填滿水,再倒出1升混合溶液后又用水填滿,以此繼續(xù)下去,則至少應(yīng)倒   次后才能使純酒精體積與總?cè)芤旱捏w積之比低于10%.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列{an}的公差為3,若a2, a4,a8成等比數(shù)列,則a4=(  )
A.8B.10C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等差數(shù)列{an}的公差d≠0,且a1,a3,a9成等比數(shù)列,則=(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{an}中,a1=1,前n項(xiàng)和為Sn且Sn+1=Sn+1,n∈N*.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)求數(shù)列{}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等差數(shù)列{an}中,|a3|=|a9|,公差d<0,Sn是數(shù)列{an}的前n項(xiàng)和,則(  )
A.S5>S6B.S5<S6
C.S6=0D.S5=S6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

等差數(shù)列{an}中,a3=3,a1+a4=5.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn,求數(shù)列{bn}的前n項(xiàng)和Sn.

查看答案和解析>>

同步練習(xí)冊(cè)答案