已知m,n是兩條不同直線,α,β,γ是三個(gè)不同平面,下列命題中正確的是( )
A.若m∥α,n∥α,則m∥n
B.若α⊥γ,β⊥γ,則α∥β
C.若m∥α,m∥β,則α∥β
D.若m⊥α,n⊥α,則m∥n
【答案】分析:通過(guò)舉反例可得A、B、C不正確,根據(jù)垂直于同一個(gè)平面的兩條直線平行,可得D正確,從而得出結(jié)論.
解答:解:A 不正確.因?yàn)閙,n平行于同一個(gè)平面,故m,n可能相交,可能平行,也可能是異面直線.
B 不正確.因?yàn)棣粒?垂直于同一個(gè)平面γ,故α,β 可能相交,可能平行.
C 不正確.因?yàn)棣粒缕叫信c同一條直線m,故α,β 可能相交,可能平行.
D正確.因?yàn)榇怪庇谕粋(gè)平面的兩條直線平行.
故選 D.
點(diǎn)評(píng):本題考查兩個(gè)平面平行的判定和性質(zhì),平面與平面垂直的性質(zhì),線面垂直的性質(zhì),注意考慮特殊情況,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

10、已知m,n是兩條不同的直線,α是一個(gè)平面,有下列四個(gè)命題:
①①若m∥α,n∥α,則m∥n;②若m⊥α,n⊥α,則m∥n;
③若m∥α,n⊥α,則m⊥n;④若m⊥α,m⊥n,則n∥α.
其中真命題的序號(hào)有
②③
. (請(qǐng)將真命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4、已知m、n是兩條不同直線,α、β、γ是三個(gè)不同平面,以下有三種說(shuō)法:
①若α∥β,β∥γ,則γ∥α; ②若α⊥γ,β∥γ,則α⊥β;
③若m⊥β,m⊥n,n?β,則n∥β.
其中正確命題的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6、已知m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,則下列命題正確的是

①若α⊥γ,α⊥β,則γ∥β      ②若m∥n,m?α,n?β,則α∥β
③若m∥n,m∥α,則n∥α      ④若n⊥α,n⊥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

14、已知m、n是兩條不同的直線,α、β是兩個(gè)不同的平面,有下列命題:
①若m?α,n∥α,則m∥n;②若m∥α,m∥β,則α∥β;
③若m⊥α,m⊥n,則n∥α;④若m⊥α,m⊥β,則α∥β;
其中真命題的個(gè)數(shù)是
1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•惠州模擬)已知m,n是兩條不同直線,α,β,γ是三個(gè)不同平面,下列命題中正確的有

①若m∥α,n∥α,則m∥n;               ②若α⊥γ,β⊥γ,則α∥β;
③若m∥α,m∥β,則α∥β;               ④若m⊥α,n⊥α,則m∥n.

查看答案和解析>>

同步練習(xí)冊(cè)答案