設(shè)非零向量
a
,
b
,則“
a
,
b
的夾角為銳角”是“|
a
+
b
|>|
a
-
b
|”的(  )
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件
考點(diǎn):平面向量數(shù)量積的運(yùn)算,必要條件、充分條件與充要條件的判斷
專題:平面向量及應(yīng)用
分析:|
a
+
b
|>|
a
-
b
|?
a
b
0.即可判斷出.
解答: 解:|
a
+
b
|>|
a
-
b
|化為
a
2
+
b
2
+2
a
b
a
2
+
b
2
-2
a
b
,∴
a
b
0.
∴非零向量
a
,
b
,則“
a
,
b
的夾角為銳角”⇒“|
a
+
b
|>|
a
-
b
|”,反之不成立,例如非零向量
a
,
b
,同向共線時(shí),其夾角為0.
因此非零向量
a
,
b
,則“
a
b
的夾角為銳角”是“|
a
+
b
|>|
a
-
b
|”的充分不必要條件.
故選:A.
點(diǎn)評(píng):本題考查了數(shù)量積運(yùn)算性質(zhì)、向量的夾角公式、充要條件的判定,考查了計(jì)算能力與推理能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z=
x(x-3)
+ilg(x+1)(x∈R).如果z為實(shí)數(shù),則x=
 
;如果z為虛數(shù),則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i為虛數(shù)單位,則復(fù)數(shù)z=
1+2i
i
在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知z1=
3
2
a+(a+1)i,z2=-3
3
b+(b+2)i(a,b∈R),若z1-z2=4
3
,則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sinωxcosωx-
3
cos2ωx(其中0<ω<3),若f(x)關(guān)于點(diǎn)(
π
6
,-
3
2
)對(duì)稱.
(1)若f(A)=
1-
3
2
,求銳角A;
(2)將y=f(x)的圖象向左平移
π
4
ω個(gè)單位,得到y(tǒng)=g(x)的圖象,當(dāng)x∈[0,
π
4
]時(shí),求g(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直角梯形ABCD中,AD∥BC,AD=AB=
1
2
BC=2,∠ABC=90°,△PAB是等邊三角形,平面PAB⊥平面ABCD.
(1)求證:BD⊥DC;
(2)求三棱錐P-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A、2B、≥C、∞D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log2(x-1)的零點(diǎn)是(  )
A、(1,0)B、(2,0)
C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-(k+1)x+2(k∈R),則f(
k+1
2
)=
 
;若當(dāng)x>0時(shí),f(x)≥0恒成立,則k的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案