已知向量=(sinx,),=(cosx,-1).
(1)當(dāng)時(shí),求2cos2x-sin2x的值;
(2)求f(x)=(+)•上的單調(diào)區(qū)間,并說明單調(diào)性.
【答案】分析:(1)由題意可得:,所以tanx=,所以2cos2x-sin2x==,進(jìn)而得到答案.
(2)由題意可得:f(x)=,并且,令,進(jìn)而得到函數(shù)的減區(qū)間,同理可得增區(qū)間.
解答:解:(1)因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/20131025123513937711739/SYS201310251235139377117016_DA/7.png">,所以,所以tanx=,
所以2cos2x-sin2x===
(2)由題意可得:f(x)=,
,
,令,得,
故f(x) 在 上是單調(diào)減函數(shù),
同理f(x) 在 上是單調(diào)增函數(shù).
點(diǎn)評:解決此類問題的關(guān)鍵是熟練掌握向量的數(shù)量積的運(yùn)算,以及三角函數(shù)的有關(guān)性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinx,cosx),向量
b
=(1,
3
)
,則|
a
+
b
|的最大值為( 。
A、3
B、
3
C、1
D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinx,cosx),
b
=(sinx+2cosx,3cosx),f(x)=
a
b
,x∈R.求
(Ⅰ)函數(shù)f(x)的最大值及取得最大值的自變量x的集合;
(Ⅱ)函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•衢州一模)已知向量
a
=(sinx,
3
2
),
b
=(cosx,-1).
(I)當(dāng)向量
a
與向量
b
共線時(shí),求tanx的值;
(II)求函數(shù)f(x)=2(
a
+
b
)•
b
圖象的一個對稱中心的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•深圳二模)已知向量
m
=(sinx,-cosx),
n
=(cosθ,-sinθ),其中0<θ<π.函數(shù)f(x)=
m
n
在x=π處取最小值.
(Ⅰ)求θ的值;
(Ⅱ)設(shè)A,B,C為△ABC的三個內(nèi)角,若sinB=2sinA,f(C)=
1
2
,求A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosx+sinx,
3
cosx),  
b
=(cosx-sinx,2sinx)
,記f(x)=
a
b
,  x∈R

(1)求函數(shù)f(x)的最小正周期.
(2)在△ABC中,角A,B,C的對邊分別為a,b,c,若f(A)=1,且a=1,b+c=2,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案