給出下列命題:
①若f(x)=2x3+3的反函數(shù)為f-1(x),則f-1(5)=1;
②過(guò)原點(diǎn)作圓x2+y2-12x+9=0的兩切線,則兩切線所夾的劣弧長(zhǎng)為2
3
π
;
③在△ABC中,已知a=5,b=6,A=30°,則B有一解且B=arcsin
3
5

④在樣本頻率分布直方圖中,共有三個(gè)長(zhǎng)方形,其面積由小到大構(gòu)成等差數(shù)列{an},且a2+a3=0.8,則最大的長(zhǎng)方形的面積為
7
15

其中正確命題的序號(hào)為
①④
①④
分析:根據(jù)原函數(shù)與反函數(shù)之間的關(guān)系得到①正確,根據(jù)弧長(zhǎng)的運(yùn)算得到②不正確,根據(jù)三角形解的個(gè)數(shù)的判斷得到③不正確,根據(jù)頻率分布直方圖得到④正確.
解答:解:若f(x)=2x3+3的反函數(shù)為f-1(x),則f-1(5)=1;把1代入原函數(shù)得到函數(shù)值時(shí)5,故①正確,
過(guò)原點(diǎn)作圓x2+y2-12x+9=0的兩切線,
過(guò)圓心做切線的垂線,根據(jù)組成的直角三角形三邊之間的關(guān)系,得到兩條切線所夾的角是60°,
根據(jù)原定周長(zhǎng)乘以
1
6
,弧長(zhǎng)是
1
6
×2×π×3
3
=
3
π
,故②不正確,
則兩切線所夾的劣弧長(zhǎng)為2
3
π

在△ABC中,已知a=5,b=6,A=30°,
∵6>5>6×sin30°
則B有兩解,故③不正確,
在樣本頻率分布直方圖中,共有三個(gè)長(zhǎng)方形,其面積由小到大構(gòu)成等差數(shù)列{an},
且a2+a3=0.8,a1=0.2,d=
4
30
,則最大的長(zhǎng)方形的面積為0.2+
8
30
=
7
15
,故④正確,
綜上可知①④正確,
故答案為:①④
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)比較多,特別注意對(duì)于解三角形的考查和對(duì)于弧長(zhǎng)的考查,本題解題的關(guān)鍵是對(duì)于所給的四個(gè)命題逐一的判斷,本題是一個(gè)中檔題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①函數(shù)y=f(x-2)與函數(shù)y=f(2-x)的圖象關(guān)于x=2對(duì)稱;
②函數(shù)y=f(x)導(dǎo)函數(shù)為y=f′(x),若f′(x0)=0,則f(x0)必為函數(shù)y=f(x)的極值;
③函數(shù)y=sinx在一象限單調(diào)遞增;
④y=tanx在其定義域內(nèi)為單調(diào)增函數(shù).
其中正確的命題序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 北師大課標(biāo)高二版(選修2-2) 2009-2010學(xué)年 第39期 總第195期 北師大課標(biāo) 題型:013

給出下列命題:

(1)若>0,則f(x)>0;

(2)dx=4;

(3)f(x)的原函數(shù)為F(x),且F(x)是以T為周期的函數(shù),則

其中正確命題的個(gè)數(shù)為

[  ]
A.

1

B.

2

C.

3

D.

0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:022

(黃岡中學(xué)模擬)給出下列命題:

A.成等比數(shù)列,是前n項(xiàng)和,則成等比數(shù)列;

B.已知函數(shù)y=2sin(ωxθ)為偶函數(shù)(0θπ),其圖象與直線y=2的交點(diǎn)的橫坐標(biāo)為,若的最小值為π,則ω的值為2,θ的值為

C.函數(shù)y=f(x)的圖象與直線x=a至多有一個(gè)交點(diǎn);

D.函數(shù)的圖象的一個(gè)對(duì)稱點(diǎn)是

其中正確命題的代號(hào)是________(按照原順序把你認(rèn)為正確命題的代號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

給出下列命題:
①函數(shù)y=f(x-2)與函數(shù)y=f(2-x)的圖象關(guān)于x=2對(duì)稱;
②函數(shù)y=f(x)導(dǎo)函數(shù)為y=f′(x),若f′(x0)=0,則f(x0)必為函數(shù)y=f(x)的極值;
③函數(shù)y=sinx在一象限單調(diào)遞增;
④y=tanx在其定義域內(nèi)為單調(diào)增函數(shù).
其中正確的命題序號(hào)為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省仙桃市沔州中學(xué)高三(上)第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

給出下列命題:
①函數(shù)y=f(x-2)與函數(shù)y=f(2-x)的圖象關(guān)于x=2對(duì)稱;
②函數(shù)y=f(x)導(dǎo)函數(shù)為y=f′(x),若f′(x)=0,則f(x)必為函數(shù)y=f(x)的極值;
③函數(shù)y=sinx在一象限單調(diào)遞增;
④y=tanx在其定義域內(nèi)為單調(diào)增函數(shù).
其中正確的命題序號(hào)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案