15.函數(shù)f(x)=log3x-$\frac{1}{x}$的零點(diǎn)所在的區(qū)間是(n,n+1)(n∈N*)則n=1.

分析 利用函數(shù)零點(diǎn)的判定定理求得函數(shù)f(x)的零點(diǎn)所在區(qū)間為(1,2),從而求得n的值.

解答 解:函數(shù)f(x)=log3x-$\frac{1}{x}$的零點(diǎn)所在的區(qū)間是(n,n+1)(n∈N*),
再根據(jù)f(2)=log32-$\frac{1}{2}$=log32-log3$\sqrt{3}$>0,f(1)=-1<0,可得函數(shù)f(x)的零點(diǎn)所在區(qū)間為(1,2),
故有n=1,
故答案為:1.

點(diǎn)評(píng) 本題主要考查函數(shù)的零點(diǎn)與方程的根的關(guān)系,函數(shù)零點(diǎn)的判定定理,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)函數(shù)f(x)=|lnx|,滿足f(a)=f(b)(a≠b),則(注:選項(xiàng)中的e為自然對(duì)數(shù)的底數(shù))( 。
A.ab=exB.ab=eC.ab=$\frac{1}{e}$D.ab=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,正三棱錐O-ABC的各邊長(zhǎng)為2,求該三棱錐的體積及表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知集合A={x|x=a0+a1×2+a2×22+a3×23},其中ai∈{0,1,2}(i=0,1,2,3),且a0≠0,則A中所有元素之和等于837.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)是R上的偶函數(shù),若對(duì)于x≥0,都有f(x+2)=f(x),且當(dāng)x∈[0,2)時(shí),f(x)=log2(x+1),則f(-2015)+f(2016)的值為(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.半徑為10cm,面積為100cm2的扇形中,弧所對(duì)的圓心角為( 。
A.10B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在△ABC中,$\overrightarrow{AB}$•$\overrightarrow{AC}$=10,$\overrightarrow{BA}$•$\overrightarrow{BC}$=6,則|${\overrightarrow{AB}}$|=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=e2x-(x-1)2,(e≈2.71828)
(1 )求曲線y=f(x)在點(diǎn)(l,f(1))處的切線方程;
(2)設(shè)方程f(x)=m-1+4x-x2在[-1,2]上恰有兩個(gè)不同的實(shí)根,求變數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在四棱錐S-ABCD中,SA⊥底面ABCD,底面ABCD是直角梯形,AD⊥AB,BC∥AD,SA=AB=BC=2,AD=1,M,N分別是SB,SC的中點(diǎn).
(Ⅰ)求證:AM∥平面SCD;
(Ⅱ)求三棱錐S-BCD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案