在等比數(shù)列中,若S10=10,S20=30,S30=         .

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•廣州二模)在等差數(shù)列{an}中,a1+a2=5,a3=7,記數(shù)列{
1anan+1
}的前n項和為Sn
(1)求數(shù)列{an}的通項公式;
(2)是否存在正整數(shù)m、n,且1<m<n,使得S1、SntSn成等比數(shù)列?若存在,求出所有符合條件的m,n值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•浦東新區(qū)二模)已知直角△ABC的三邊長a,b,c,滿足a≤b<c
(1)在a,b之間插入2011個數(shù),使這2013個數(shù)構(gòu)成以a為首項的等差數(shù)列{an },且它們的和為2013,求c的最小值;
(2)已知a,b,c均為正整數(shù),且a,b,c成等差數(shù)列,將滿足條件的三角形的面積從小到大排成一列S1,S2,S3,…Sn,且Tn=-S1+S2-S3+…+(-1) nSn,求滿足不等式T2n>6•2n+1的所有n的值;
(3)已知a,b,c成等比數(shù)列,若數(shù)列{Xn}滿足
5
Xn=(
c
a
)n-(-
a
c
)n
(n∈N+),證明:數(shù)列{
Xn
}中的任意連續(xù)三項為邊長均可以構(gòu)成直角三角形,且Xn是正整數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,a1為首項,Sn是其前n項的和,將Sn=
(a1+an)n
2
整理為
Sn
n
=
1
2
an+
1
2
a1
后可知:點P1(a1,
S1
1
),P2(a2
S2
2
),…,Pn(an,
Sn
n
),…
(n為正整數(shù))都在直線y=
1
2
x+
1
2
a1
上,類似地,若{an}是首項為a1,公比為q(q≠1)的等比數(shù)列,則點P1(a1,S1),P2(a2,S2),…,Pn(an,Sn),…(n為正整數(shù))在直線
y=
q
q-1
x+
a1
1-q
y=
q
q-1
x+
a1
1-q
上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•徐州模擬)已知各項均為正數(shù)的等比數(shù)列{an}的公比為q,且0<q<
1
2

(1)在數(shù)列{an}中是否存在三項,使其成等差數(shù)列?說明理由;
(2)若a1=1,且對任意正整數(shù)k,ak-(aK+1+ak+2)仍是該數(shù)列中的某一項.
(ⅰ)求公比q;
(ⅱ)若bn=-log an+1
2
+1),Sn=b1+b2+…+bn,Tn=S1+S2+…+Sn,試用S2011 表示T2011

查看答案和解析>>

科目:高中數(shù)學 來源:廣州二模 題型:解答題

在等差數(shù)列{an}中,a1+a2=5,a3=7,記數(shù)列{
1
anan+1
}的前n項和為Sn
(1)求數(shù)列{an}的通項公式;
(2)是否存在正整數(shù)m、n,且1<m<n,使得S1、SntSn成等比數(shù)列?若存在,求出所有符合條件的m,n值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案