解答:
解:(Ⅰ)f(x)的定義域?yàn)椋?,+∞),
∴f′(x)=
(x>0),
當(dāng)k≤0時,kx≤0,
∴e
x-kx>0,
令f′(x)=0,則x=2,
∴當(dāng)0<x<2時,f′(x)<0,f(x)單調(diào)遞減;
當(dāng)x>2時,f′(x)>0,f(x)單調(diào)遞增,
∴f(x)的單調(diào)遞減區(qū)間為(0,2),單調(diào)遞增區(qū)間為(2,+∞).
(Ⅱ)由(Ⅰ)知,k≤0時,函數(shù)f(x)在(0,2)內(nèi)單調(diào)遞減,
故f(x)在(0,2)內(nèi)不存在極值點(diǎn);
當(dāng)k>0時,設(shè)函數(shù)g(x)=e
x-kx,x∈[0,+∞).
∵g′(x)=e
x-k=e
x-e
lnk,
當(dāng)0<k≤1時,
當(dāng)x∈(0,2)時,g′(x)=e
x-k>0,y=g(x)單調(diào)遞增,
故f(x)在(0,2)內(nèi)不存在兩個極值點(diǎn);
當(dāng)k>1時,
得x∈(0,lnk)時,g′(x)<0,函數(shù)y=g(x)單調(diào)遞減,
x∈(lnk,+∞)時,g′(x)>0,函數(shù)y=g(x)單調(diào)遞增,
∴函數(shù)y=g(x)的最小值為g(lnk)=k(1-lnk)
函數(shù)f(x)在(0,2)內(nèi)存在兩個極值點(diǎn)
當(dāng)且僅當(dāng)
| g(0)>0 | g(lnk)<0 | g(2)>0 | 0<lnk<2 |
| |
解得:e
<k<綜上所述,
函數(shù)f(x)在(0,2)內(nèi)存在兩個極值點(diǎn)時,k的取值范圍為(e,
)