1.已知f(x)=$\left\{\begin{array}{l}{x^3},x≥0\\|lg(-x)|,x<0\end{array}$,則函數(shù)y=2f2(x)-3f(x)的零點(diǎn)個(gè)數(shù)為5.

分析 令y=2f2(x)-3f(x)=0,則f(x)=0,或f(x)=$\frac{3}{2}$,畫出函數(shù)f(x)=$\left\{\begin{array}{l}{x^3},x≥0\\|lg(-x)|,x<0\end{array}$的圖象,可得答案.

解答 解:令y=2f2(x)-3f(x)=0,
則f(x)=0,或f(x)=$\frac{3}{2}$,
函數(shù)f(x)=$\left\{\begin{array}{l}{x^3},x≥0\\|lg(-x)|,x<0\end{array}$的圖象如下圖所示:

由圖可得:f(x)=0有2個(gè)根,或f(x)=$\frac{3}{2}$有3個(gè)根,
故函數(shù)y=2f2(x)-3f(x)的零點(diǎn)個(gè)數(shù)為5個(gè),
故答案為:5

點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)的零點(diǎn),數(shù)形結(jié)合思想,分段函數(shù)的應(yīng)用,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在三棱柱ABC-A1B1C1中,AB⊥BC,AB1⊥平面ABC,且AB=BC=AB1=2.
(Ⅰ)證明:平面C1CBB1⊥平面A1ABB1
(Ⅱ)若點(diǎn)P為A1C1的中點(diǎn),求直線BP與平面A1ACC1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.與雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$共漸近線且過點(diǎn)$(2\sqrt{3},-3)$的雙曲線方程$\frac{y^2}{{\frac{9}{4}}}-\frac{x^2}{4}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知$cos(\frac{3π}{14}-θ)=\frac{1}{3}$,則$sin(\frac{2π}{7}+θ)$=( 。
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.$-\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.集合{1,2,3}的子集個(gè)數(shù)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<\frac{π}{2})$的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)=lg[f(x)-1]的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知p:x2-x-2<0,q:[x-(1-m)]•[x-(1+m)]<0(m>0),若p是q的充分不必要條件,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.長方體ABCD-A1B1C1D1中,若A1C與平面AB1D1相交于點(diǎn)M,則$\frac{{{A_1}M}}{{{A_1}C}}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{{x}^{2}}{lnx}$.
(I)求函數(shù)f(x)在區(qū)間[e${\;}^{\frac{1}{4}}$,e]上的最值;
(II)若g(x)=f(x)+$\frac{4{m}^{2}-4mx}{lnx}$(其中m為常數(shù)),且當(dāng)0<m<$\frac{1}{2}$時(shí),設(shè)函數(shù)g(x)的3個(gè)極值點(diǎn)為a,b,c,且a<b<c,證明:0<2a<b<1<c,并討論函數(shù)g(x)的單調(diào)區(qū)間(用a,b,c表示單調(diào)區(qū)間)

查看答案和解析>>

同步練習(xí)冊答案