設(shè)函數(shù)f(x)=(x-a)2lnx,a∈R,e為自然對(duì)數(shù)的底數(shù),e=2.7182…,如果對(duì)任意的x∈(0,3e],恒有f(x)≤4e2成立,求a的取值范圍.
分析:對(duì)x∈(0,3e]進(jìn)行分區(qū)間討論,求出f(x)的最大值,令最大值小于4e2,解不等式求出a的范圍.
解答:解:f'(x)=(x-a)(2ln x+1-
a
x
).
①當(dāng)0<x≤1時(shí),對(duì)于任意的實(shí)數(shù)a,恒有f(x)≤0<4e2成立
②當(dāng)1<x≤3e時(shí),由題意,首先有f(3e)=(3e-a)2ln3e≤4e2,解得3e-
2e
ln3e
≤a≤3e+
2e
ln3e

由(I)知f′(x)=2(x-a)lnx+
(x-a)2
x
=(x-a)(2lnx+1-
a
x
),
令h(x)=2lnx+1-
a
x
,則h(1)=1-a<0,h(a)=2lna>0且h(3e)=2ln3e+1-
a
3e
≥2ln3e+1-
3e+
2e
ln3e
3e
=2(ln3e-
1
3
ln3e
)>0
又h(x)在(0,+∞)內(nèi)單調(diào)遞增,所以函數(shù)h(x)在(0,+∞)內(nèi)有唯一零點(diǎn),記此零點(diǎn)為x0
則1<x0<3e,1<x0<a,從而,當(dāng)x∈(0,x0)時(shí),f′(x)>0,當(dāng)x∈(x0,a)時(shí),f′(x)<0,當(dāng)x∈(a,+∞)時(shí),f′(x)>0,即f(x)在(0,x0)內(nèi)是增函數(shù),在(x0,a)內(nèi)是減函數(shù),在(a,+∞)內(nèi)是增函數(shù)
所以要使得對(duì)任意的x∈(0,3e],恒有f(x)≤4e2成立只要有
f(x0)=(x0-a)2lnx04e2
f(3e)=(3e-a)2ln3e≤4e2

有h(x0)=2lnx0+1-
a
x0
=0得a=2x0lnx0+x0,將它代入f(x0)=(x0-a)2lnx04e2得4x02ln2x0≤4e2
又x0>1,注意到函數(shù)4x2ln2x在(1,+∞)上是增函數(shù)故1<x0≤e
再由a=2x0lnx0+x0,及函數(shù)2xlnx+x在(1,+∞)上是增函數(shù),可得1<a≤3e
由f(3e)=(3e-a)2ln3e≤4e2解得3e-
2e
ln3e
≤a≤3e+
2e
ln3e
,
所以得3e-
2e
ln3e
≤a≤3e

綜上,a的取值范圍為3e-
2e
ln3e
≤a≤3e
點(diǎn)評(píng):本題考查函數(shù)的極值的概念,導(dǎo)數(shù)運(yùn)算法則,導(dǎo)數(shù)應(yīng)用,不等式等基礎(chǔ)知識(shí),同時(shí)考查推理論證能力,分類討論等分析問(wèn)題和解決問(wèn)題的能力,解題的關(guān)鍵是準(zhǔn)確求出導(dǎo)數(shù),利用二次求導(dǎo)和函數(shù)零點(diǎn)分區(qū)間計(jì)論導(dǎo)函數(shù)的符號(hào),得到原函數(shù)的單調(diào)性,本題屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時(shí),f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)

②當(dāng)x∈[-1,0]時(shí)f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)由小到大構(gòu)成一個(gè)無(wú)窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個(gè)不同的根.
其中真命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省蘇、錫、常、鎮(zhèn)四市高三調(diào)研數(shù)學(xué)試卷(一)(解析版) 題型:解答題

設(shè)函數(shù)f(x)=x(x-1)2,x>0.
(1)求f(x)的極值;
(2)設(shè)0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數(shù)的最小值;
(3)設(shè)函數(shù)g(x)=lnx-2x2+4x+t(t為常數(shù)),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實(shí)數(shù)m有且只有一個(gè),求實(shí)數(shù)m和t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省蘇州市高考數(shù)學(xué)一模試卷(解析版) 題型:解答題

設(shè)函數(shù)f(x)=x(x-1)2,x>0.
(1)求f(x)的極值;
(2)設(shè)0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數(shù)的最小值;
(3)設(shè)函數(shù)g(x)=lnx-2x2+4x+t(t為常數(shù)),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實(shí)數(shù)m有且只有一個(gè),求實(shí)數(shù)m和t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案