【題目】某電訊企業(yè)為了了解某地區(qū)居民對(duì)電訊服務(wù)質(zhì)量評(píng)價(jià)情況,隨機(jī)調(diào)查100 名用戶,根據(jù)這100名用戶對(duì)該電訊企業(yè)的評(píng)分,繪制頻率分布直方圖,如圖所示,其中樣本數(shù)據(jù)分組為,…….

1)估計(jì)該地區(qū)用戶對(duì)該電訊企業(yè)評(píng)分不低于70分的概率,并估計(jì)對(duì)該電訊企業(yè)評(píng)分的中位數(shù);

2)現(xiàn)從評(píng)分在的調(diào)查用戶中隨機(jī)抽取2人,求2人評(píng)分都在的概率.

【答案】1;77.14;(2.

【解析】

1)由題意列出頻率分布表,求和即可估計(jì)該地區(qū)用戶對(duì)該電訊企業(yè)評(píng)分不低于70分的概率;利用中位數(shù)兩側(cè)的概率和相等列方程即可估計(jì)對(duì)該電訊企業(yè)評(píng)分的中位數(shù);

2)由題意計(jì)算出受調(diào)查用戶評(píng)分在、的人數(shù),求出總的基本事件個(gè)數(shù)及滿足要求的基本事件的個(gè)數(shù),由古典概型概率公式即可得解.

1)由題意,該地區(qū)用戶對(duì)該電訊企業(yè)評(píng)分的頻率分布如下表:

評(píng)分

頻率

0.04

0.06

0.20

0.28

0.24

0.18

因此可估計(jì)評(píng)分不低于70分的概率為;

對(duì)該電訊企業(yè)評(píng)分的中位數(shù)設(shè)為x,可得,

解得,

所以可估計(jì)對(duì)該電訊企業(yè)評(píng)分的中位數(shù)為

2)受調(diào)查用戶評(píng)分在的有人,

若編號(hào)依次為123,4,從中選2人的事件有、

、、

共有個(gè)基本事件;

受調(diào)查用戶評(píng)分在的有人,

若編號(hào)依次為1,23,..910,從中選2人,

可得共有個(gè)基本事件;

因此2人評(píng)分都在的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且與拋物線交于,兩點(diǎn),為坐標(biāo)原點(diǎn))的面積為

(1)求橢圓的方程;

(2)如圖,點(diǎn)為橢圓上一動(dòng)點(diǎn)(非長軸端點(diǎn))為左、右焦點(diǎn),的延長線與橢圓交于點(diǎn),的延長線與橢圓交于點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的個(gè)數(shù)是(

x1”x2”的充分不必要條件;

fx)是其定義域上的可導(dǎo)函數(shù),f'x0)=0”yfx)在x0處有極值的充要條件;

③命題ab,則2a2b1”的否命題為ab,則2a≤2b1”

④若pq為假命題,則pq均為假命題.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某高三年級(jí)男生中隨機(jī)抽取50名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于之間,將測(cè)量結(jié)果按如下方式分成6組:第1,第2,…,第6,如圖是按上述分組方法得到的頻率分布直方圖.

1)由頻率分布直方圖估計(jì)該校高三年級(jí)男生身高的中位數(shù);

2)在這50名男生身高不低于的人中任意抽取2人,則恰有一人身高在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)、分別是橢圓的左、右焦點(diǎn),、兩點(diǎn)分別是橢圓的上、下頂點(diǎn),是等腰直角三角形,延長交橢圓點(diǎn),且的周長為.

1)求橢圓的方程;

2)設(shè)點(diǎn)是橢圓上異于、的動(dòng)點(diǎn),直線、與直線分別相交于兩點(diǎn),點(diǎn),試問:外接圓是否恒過軸上的定點(diǎn)(異于點(diǎn))?若是,求該定點(diǎn)坐標(biāo);若否,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)為,點(diǎn)在橢圓上,且面積的最大值為,周長為6.

1)求橢圓的方程,并求橢圓的離心率;

2)已知直線與橢圓交于不同的兩點(diǎn),若在軸上存在點(diǎn),使得中點(diǎn)的連線與直線垂直,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐的底面是邊長為3的等邊三角形,側(cè)棱設(shè)點(diǎn)M,N分別為PCBC的中點(diǎn).

(Ⅰ)求證:BC⊥面AMN;

(Ⅱ)求直線AP與平面AMN所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C)的準(zhǔn)線與x軸交于點(diǎn)A,點(diǎn)在拋物線C.

1)求C的方程;

2)過點(diǎn)M作直線l,交拋物線C于另一點(diǎn)N,若的面積為,求直線l的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;

2)當(dāng)時(shí),的最大值為2,求的值,并求出的對(duì)稱軸方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案