當實數(shù)a,b分別為何值時,三角函數(shù)式的值與x無關(guān),且恒等于1.

答案:4,-3
解析:

解:

f(x)x無關(guān)且f(x)=1

解得

故當a=4,b=3適合條件.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

橢圓E的中心在原點O,焦點在x軸上,離心率e=
2
3
,過點C(-1,0)的直線l交橢圓于A、B兩點,且滿足:
CA
BC
(λ≥2).
(1)若λ為常數(shù),試用直線l的斜率k(k≠0)表示三角形OAB的面積;
(2)若λ為常數(shù),當三角形OAB的面積取得最大值時,求橢圓E的方程;
(3)若λ變化,且λ=k2+1,試問:實數(shù)λ和直線l的斜率k(k∈R)分別為何值時,橢圓E的短半軸長取得最大值?并求出此時的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:044

當實數(shù)ab分別為何值時,三角函數(shù)式的值與x無關(guān),且恒等于1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓E的中心在原點O,焦點在x軸上,離心率e=,過點C(-1,0)的直線l交橢圓于A、B兩點,且滿足(λ≥2).

(1)若λ為常數(shù),試用直線l的斜率k(k≠0)表示△OAB的面積;

(2)若λ為常數(shù),當△OAB的面積取得最大值時,求橢圓E的方程;

(3)若λ變化,且λ=k2+1,試問:實數(shù)λ和直線l的斜率k(k∈R)分別為何值時,橢圓E的短半軸長取得最大值?并求出此時的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年河南省鄭州47中高考模擬數(shù)學試卷(解析版) 題型:解答題

橢圓E的中心在原點O,焦點在x軸上,離心率,過點C(-1,0)的直線l交橢圓于A、B兩點,且滿足:(λ≥2).
(1)若λ為常數(shù),試用直線l的斜率k(k≠0)表示三角形OAB的面積;
(2)若λ為常數(shù),當三角形OAB的面積取得最大值時,求橢圓E的方程;
(3)若λ變化,且λ=k2+1,試問:實數(shù)λ和直線l的斜率k(k∈R)分別為何值時,橢圓E的短半軸長取得最大值?并求出此時的橢圓方程.

查看答案和解析>>

同步練習冊答案