設(shè)α∈(0,),若sinα=,則=
[     ]
A.
B.
C.
D.4
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•江蘇二模)如圖是一塊長(zhǎng)方形區(qū)域ABCD,AD=2(km),AB=1(km).在邊AD的中點(diǎn)O處,有一個(gè)可轉(zhuǎn)動(dòng)的探照燈,其照射角∠EOF始終為
π
4
,設(shè)∠AOE=α(0≤α≤
4
),探照燈O照射在長(zhǎng)方形ABCD內(nèi)部區(qū)域的面積為S.
(1)當(dāng)0≤α<
π
2
時(shí),寫出S關(guān)于α的函數(shù)表達(dá)式;
(2)當(dāng)0≤α≤
π
4
時(shí),求S的最大值.
(3)若探照燈每9分鐘旋轉(zhuǎn)“一個(gè)來(lái)回”(OE自O(shè)A轉(zhuǎn)到OC,再回到OA,稱“一個(gè)來(lái)回”,忽略O(shè)E在OA及OC反向旋轉(zhuǎn)時(shí)所用時(shí)間),且轉(zhuǎn)動(dòng)的角速度大小一定,設(shè)AB邊上有一點(diǎn)G,且∠AOG=
π
6
,求點(diǎn)G在“一個(gè)來(lái)回”中,被照到的時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax+
2
x
+6
,其中a為實(shí)常數(shù).
(1)若f(x)>3x在(1,+∞)上恒成立,求a的取值范圍;
(2)已知a=
3
4
,P1,P2是函數(shù)f(x)圖象上兩點(diǎn),若在點(diǎn)P1,P2處的兩條切線相互平行,求這兩條切線間距離的最大值;
(3)設(shè)定義在區(qū)間D上的函數(shù)y=s(x)在點(diǎn)P(x0,y0)處的切線方程為l:y=t(x),當(dāng)x≠x0時(shí),若
s(x)-t(x)
x-x0
>0
在D上恒成立,則稱點(diǎn)P為函數(shù)y=s(x)的“好點(diǎn)”.試問(wèn)函數(shù)g(x)=x2f(x)是否存在“好點(diǎn)”.若存在,請(qǐng)求出所有“好點(diǎn)”坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域?yàn)閇0,1],且同時(shí)滿足:①f(1)=3;②f(x)≥2對(duì)一切x∈[0,1]恒成立;③若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)-2
(1)求f(0)的值
(2)設(shè)s,t∈[0,1],且s<t,求證:f(s)≤f(t)
(3)試比較f(
1
2n
)
1
2n
+2
(n∈N)的大;
(4)某同學(xué)發(fā)現(xiàn),當(dāng)x=
1
2n
(n∈N)時(shí),有f(x)<2x+2,由此他提出猜想:對(duì)一切x∈(0,1],都有f(x)<2x+2,請(qǐng)你判斷此猜想是否正確,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•閔行區(qū)一模)將邊長(zhǎng)分別為1、2、3、…、n、n+1、…(n∈N*)的正方形疊放在一起,形成如圖所示的圖形,由小到大,依次記各陰影部分所在的圖形為第1個(gè)、第2個(gè)、…、第n個(gè)陰影部分圖形.容易知道第1個(gè)陰影部分圖形的周長(zhǎng)為8.設(shè)前n個(gè)陰影部分圖形的周長(zhǎng)的平均值為f(n),記數(shù)列{an}滿足an=
f(n),當(dāng)n為奇數(shù)
f(an-1) ,當(dāng)n為偶數(shù)

(1)求f(n)的表達(dá)式;
(2)寫出a1,a2,a3的值,并求數(shù)列{an}的通項(xiàng)公式;
(3)記bn=an+s(s∈R),若不等式
.
bn+1bn+1
bn+2bn
.
>0
有解,求s的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•長(zhǎng)寧區(qū)二模)設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,過(guò)F且垂直于x軸的直線與拋物線交于P1,P2兩點(diǎn),已知|P1P2|=8.
(1)求拋物線C的方程;
(2)過(guò)點(diǎn)M(3,0)作方向向量為
d
=(1,a)
的直線與曲線C相交于A,B兩點(diǎn),求△FAB的面積S(a)并求其值域;
(3)設(shè)m>0,過(guò)點(diǎn)M(m,0)作直線與曲線C相交于A,B兩點(diǎn),問(wèn)是否存在實(shí)數(shù)m使∠AFB為鈍角?若存在,請(qǐng)求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案