【題目】在對人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運動.
(1)根據(jù)以上數(shù)據(jù)建立一個 列聯(lián)表;
(2)判斷性別與休閑方式是否有關(guān)系.

0.05

0.025

0.010

3.841

5.024

6.635

【答案】
(1)解: 的列聯(lián)表:

休閑方式

性別

看電視

運動

總計

43

27

70

21

33

54

總計

64

60

124


(2)解:假設(shè)“休閑方式與性別無關(guān)”

因為 ,所以有理由認(rèn)為假設(shè)“休閑方式與性別無關(guān)”是不合理的,即有97.5%的把握認(rèn)為“休閑方式與性別有關(guān)”.


【解析】(1)根據(jù)題意將數(shù)據(jù)填入對應(yīng)的空格中即可;(2)根據(jù)公式K2=計算K2的觀測值,然后比較K2與臨界值的大小關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們國家正處于老齡化社會中,老有所依也是政府的民生工程.某市共有戶籍人口400萬,其中老人(年齡60歲及以上)人數(shù)約有66萬,為了解老人們的健康狀況,政府從 老人中隨機抽取600人并委托醫(yī)療機構(gòu)免費為他們進(jìn)行健康評估,健康狀況共分為不能 自理、不健康尚能自理、基本健康、健康四個等級,并以80歲為界限分成兩個群體進(jìn)行 統(tǒng)計,樣本分布被制作成如圖表:
(1)若采取分層抽樣的方法再從樣本中的不能自理的老人中抽取16人進(jìn)一步了解他們的生活狀況,則兩個群體中各應(yīng)抽取多少人?
(2)估算該市80歲及以上長者占全市戶籍人口的百分比;
(3)據(jù)統(tǒng)計該市大約有五分之一的戶籍老人無固定收入,政府計劃為這部分老人每月發(fā) 放生活補貼,標(biāo)準(zhǔn)如下:①80歲及以上長者每人每月發(fā)放生活補貼200元;②80歲以下 老人每人每月發(fā)放生活補貼120元;③不能自理的老人每人每月額外發(fā)放生活補貼100 元.試估計政府執(zhí)行此計劃的年度預(yù)算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) 若函數(shù) 上有3個零點,則 的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的各項均為正數(shù),前項和為,且.

1)求證:數(shù)列是等差數(shù)列;

2)設(shè),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f (x)=Asin(ωx+φ),(0<φ<π)的圖象如圖所示,若f (x0)=3,x0∈( , ),則sinx0的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,sin(A﹣B)=sinC﹣sinB,D是邊BC的一個三等分點(靠近點B),記 ,則當(dāng)λ取最大值時,tan∠ACD=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個正四面體的“骰子”(四個面分別標(biāo)有1,2,3,4四個數(shù)字),擲一次“骰子”三個側(cè)面的數(shù)字的和為“點數(shù)”,連續(xù)拋擲“骰子”兩次.
(1)設(shè)A為事件“兩次擲‘骰子’的點數(shù)和為16”,求事件A發(fā)生的概率;
(2)設(shè)X為兩次擲“骰子”的點數(shù)之差的絕對值,求隨機變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機構(gòu)用簡單隨機抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如表.

非一線

一線

總計

愿生

45

20

65

不愿生

13

22

35

總計

58

42

100

附表:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

由K2= 算得,K2= ≈9.616參照附表,得到的正確結(jié)論是(
A.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“生育意愿與城市級別有關(guān)”
B.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“生育意愿與城市級別無關(guān)”
C.有99%以上的把握認(rèn)為“生育意愿與城市級別有關(guān)”
D.有99%以上的把握認(rèn)為“生育意愿與城市級別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線C的參數(shù)方程為為參數(shù)),曲線P在以該直角坐標(biāo)系的原點O的為極點,x軸的正半軸為極軸的極坐標(biāo)系下的方程為ρ2﹣4ρcosθ+3=0.
(1)求直線C的普通方程和曲線P的直角坐標(biāo)方程;
(2)設(shè)直線C和曲線P的交點為A、B,求|AB|.

查看答案和解析>>

同步練習(xí)冊答案