已知函數(shù)f(x)=,x∈[1,+∞).

(1)當(dāng)a=時(shí),求函數(shù)f(x)的最小值;

(2)若對(duì)任意x∈[1,+∞),f(x)>0恒成立,試求實(shí)數(shù)a的取值范圍.

答案:
解析:

  解:(1)當(dāng)a=時(shí),f(x)=x++2,不難證明f(x)在[1,+∞)上為增函數(shù),

  所以f(x)在[1,+∞)上的最小值為f(1)=

  (2)f(x)=>0在[1,+∞)上恒成立,得x2+2x+a>0在[1,+∞)上恒成立.

  令y=x2+2x+a,則y=(x+1)2+a-1在[1,+∞)上遞增,

  故當(dāng)x=1時(shí),ymin=3+a.于是當(dāng)且僅當(dāng)ymin=3+a>0時(shí),函數(shù)f(x)恒成立.

  故a>-3.

  思路分析:函數(shù)的最小值與函數(shù)的單調(diào)性聯(lián)系起來(lái),把恒成立問(wèn)題轉(zhuǎn)化為函數(shù)的最小值問(wèn)題.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011屆南京市金陵中學(xué)高三第四次模擬考試數(shù)學(xué)試題 題型:解答題

(本小題滿(mǎn)分16分)已知函數(shù)f(x)=ax2-(2a+1)x+2lnx(a為正數(shù)).
(1) 若曲線(xiàn)y=f(x)在x=1和x=3處的切線(xiàn)互相平行,求a的值;
(2) 求f(x)的單調(diào)區(qū)間;
(3) 設(shè)g(x)=x2-2x,若對(duì)任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省杭州市高三上學(xué)期開(kāi)學(xué)考試數(shù)學(xué)卷 題型:選擇題

已知函數(shù)f(x)=4x2mx+5在區(qū)間[-2,+∞)上是增函數(shù),則f(1)的范圍是(  )

A.f(1)≥25         B.f(1)=25     C.f(1)≤25         D.f(1)>25

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖南省高三第三次月考文科數(shù)學(xué)卷 題型:選擇題

已知函數(shù)f(x)=若f(a)=,則a=                 (  )

A.-1                      B.

C.-1或                 D.1或-

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖北省天門(mén)市高三天5月模擬文科數(shù)學(xué)試題 題型:填空題

  已知函數(shù)f(x)=ax2+bx+c(a≠0),且f(x)=x無(wú)實(shí)根,下列命題中:

    (1)方程f [f (x)]=x一定無(wú)實(shí)根;

    (2)若a>0,則不等式f [f (x)]>x對(duì)一切實(shí)數(shù)x都成立;

    (3)若a<0,則必存在實(shí)數(shù)x0,使f [f (x0)]>x0;

    (4)若a+b+c=0,則不等式f [f (x)]<x對(duì)一切x都成立;

    正確的序號(hào)有          .              

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆江西省南昌市高三第一次模擬測(cè)試卷理科數(shù)學(xué)試卷 題型:選擇題

已知函數(shù)f(x)=|lg(x-1)|-()x有兩個(gè)零點(diǎn)x1,x2,則有

A.x1x2<1    B.x1x2<x1x2

C.x1x2x1x2    D.x1x2>x1x2

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案