20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},(x≤0)}\\{f(x-4),(x>0)}\end{array}\right.$,則f(2016)=1.

分析 利用分段函數(shù)的性質(zhì)求解.

解答 解:∵f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},(x≤0)}\\{f(x-4),(x>0)}\end{array}\right.$,
∴f(2016)=f(504×4)=f(0)=($\frac{1}{2}$)0=1.
故答案為:1.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意分段函數(shù)的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知集合A={x|0<log4x<1},B=$\left\{{x|y=\sqrt{1-{2^{x-3}}}}\right\}$,則A∩B=( 。
A.(0,1)B.(0,3]C.(1,3)D.(1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=-2sin2x+5sinx-2,求函數(shù)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.要得到函數(shù)y=cos(3x-$\frac{π}{4}$)的圖象,只需將函數(shù)y=sin3x的圖象(  )
A.向右平移$\frac{π}{12}$個(gè)單位B.向左平移$\frac{π}{12}$個(gè)單位
C.向右平移$\frac{π}{4}$個(gè)單位D.向左平移$\frac{π}{4}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.計(jì)算:lg25-2lg$\frac{1}{2}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知向量$\overrightarrow{α}$,$\overrightarrow{β}$是平面內(nèi)兩個(gè)互相垂直垂直的單位向量,若(5$\overrightarrow{α}$-2$\overrightarrow{γ}$)•(12$\overrightarrow{β}$-2$\overrightarrow{γ}$)=0,則|$\overrightarrow{γ}$|的最大值是$\frac{13}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知等差數(shù)列{an}的前n項(xiàng)和Sn滿(mǎn)足:S5=30,S10=110,數(shù)列{bn}的前n項(xiàng)和Tn滿(mǎn)足:b1=1,bn+1-2Tn=1.
(1)求Sn與bn;
(2)比較Snbn與2Tnan的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.某中學(xué)高中一年級(jí)、二年級(jí)、三年級(jí)的學(xué)生人數(shù)之比為5:4:3,現(xiàn)用分層抽樣的方法抽取一個(gè)容量為240的樣本,則所抽取的高中二年級(jí)學(xué)生的人數(shù)是(  )
A.120B.100C.90D.80

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在等差數(shù)列{an}中,若a4+a6+a8+a10+a12=120,則2a10-a12的值為( 。
A.6B.12C.24D.60

查看答案和解析>>

同步練習(xí)冊(cè)答案