【題目】已知函數(shù)有兩個(gè)零點(diǎn).

(1)求的取值范圍;

(2)是否存在實(shí)數(shù), 對(duì)于符合題意的任意,當(dāng) 時(shí)均有?

若存在,求出所有的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1) ;(2) .

【解析】試題分析:(1)先分離得 ,再利用導(dǎo)數(shù)可得單調(diào)性:先減再增,結(jié)合圖像以及值域可得的取值范圍;(2)先根據(jù),得,再根據(jù)零點(diǎn)解得,轉(zhuǎn)化不等式得,令,化簡(jiǎn)得,因此 , ,最后根據(jù)導(dǎo)數(shù)研究對(duì)應(yīng)函數(shù)單調(diào)性,確定對(duì)應(yīng)函數(shù)最值,即得取值集合

試題解析:(1)

當(dāng)時(shí), 對(duì)恒成立,與題意不符,

當(dāng), ,

時(shí),

即函數(shù)單調(diào)遞增,在單調(diào)遞減,

時(shí)均有,

,解得: ,

綜上可知: 的取值范圍;

(2)由(1)可知

的任意性及知, ,且,

又∵,令,則,且恒成立,

,而,

時(shí), 時(shí),

,令,

,則時(shí), ,即函數(shù)在單調(diào)遞減,

,與不符;

,則時(shí), ,即函數(shù)單調(diào)遞減,

,與式不符;

,解得,此時(shí)恒成立, ,

即函數(shù)單調(diào)遞增,又

時(shí), ; 時(shí), 符合式,

綜上,存在唯一實(shí)數(shù)符合題意.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】先后拋擲兩枚骰子,設(shè)出現(xiàn)的點(diǎn)數(shù)之和是12,11,10的概率依次是P1,P2,P3,則(

(A)P1=P2<P3 (B)P1<P2<P3 (C)P1<P2=P3 (D)P3=P2<P1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)是棱長(zhǎng)為2的正方體的棱的中點(diǎn),點(diǎn)在面所在的平面內(nèi),若平面分別與平面和平面所成的銳二面角相等,則點(diǎn)到點(diǎn)的最短距離是( )

A. B. C. 1 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品(百臺(tái)),其總成本為(萬(wàn)元),其中固定成本為萬(wàn)元,并且每生產(chǎn)百臺(tái)的生產(chǎn)成本為萬(wàn)元(總成本固定成本生產(chǎn)成本).銷售收入(萬(wàn)元)滿足,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請(qǐng)完成下列問(wèn)題:

1)寫出利潤(rùn)函數(shù)的解析式(利潤(rùn)銷售收入總成本);

2)工廠生產(chǎn)多少臺(tái)產(chǎn)品時(shí),可使盈利最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為增強(qiáng)市民的節(jié)能環(huán)保意識(shí),汕頭市面向全市征召義務(wù)宣傳志愿者,從符合條件的 500 名志愿者中隨機(jī)抽取 100 名,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)是:

(1)求圖中的值,并根據(jù)頻率分布直方圖估計(jì)這 500 名志愿者中年齡在歲的人數(shù);

(2)在抽出的 100 名志愿者中按年齡采用分層抽樣的方法抽取 10 名參加人民廣場(chǎng)的宣傳活動(dòng),再?gòu)倪@ 10 名志愿者中選取 3 名擔(dān)任主要負(fù)責(zé)人.記這 3 名志愿者中“年齡低于 35 歲”的人數(shù)為 ,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法錯(cuò)誤的是( )

A. 命題”,則:“

B. 命題“若,則”的否命題是真命題

C. 為假命題,則為假命題

D. 的充分不必要條件,則的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動(dòng),準(zhǔn)備進(jìn)一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需要看不同類型的書籍,為了合理配備資源,現(xiàn)對(duì)小區(qū)看書人員進(jìn)行年齡調(diào)查,隨機(jī)抽取了一天40名讀書者進(jìn)行調(diào)查,將他們的年齡分成6段: , , , , , 后得到如圖所示的頻率分布直方圖,問(wèn):

(1)在40名讀書者中年齡分布在的人數(shù);

(2)估計(jì)40名讀書者年齡的平均數(shù)和中位數(shù);

(3)若從年齡在的讀書者中任取2名,求這兩名讀書者年齡在的人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在吸煙與患肺癌這兩個(gè)分類變量的獨(dú)立性檢驗(yàn)的計(jì)算中,下列說(shuō)法正確的是

A. 的觀測(cè)值為,在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為吸煙與患肺癌有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺癌.

B. 由獨(dú)立性檢驗(yàn)可知,在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為吸煙與患肺癌有關(guān)系時(shí),我們說(shuō)某人吸煙,那么他有的可能患有肺癌.

C. 若從統(tǒng)計(jì)量中求出在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為吸煙與患肺癌有關(guān)系,是指有的可能性使得判斷出現(xiàn)錯(cuò)誤.

D. 以上三種說(shuō)法都不正確.

查看答案和解析>>

同步練習(xí)冊(cè)答案