已知函數(shù)f(x)=x-lnx-1.
(Ⅰ)求函數(shù)f(x)在x=2處的切線方程;
(Ⅱ)若x∈(0,+∞)時,f(x)≥ax-2恒成立,求實數(shù)a的取值范圍.
考點:利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)求切線方程,關(guān)鍵是求斜率,也就是求f(x)在x=2時的導(dǎo)數(shù),然后利用點斜式,問題得以解決;
(Ⅱ)求參數(shù)的取值范圍,轉(zhuǎn)化為a≤1+
1
x
-
lnx
x
,也就是求最值的問題,問題得以解決.
解答: 解:(Ⅰ)由題意得,f′(x)=1-
1
x

f′(2)=1-
1
2
=
1
2
,f(2)=1-ln2,
∴函數(shù)f(x)在x=2處的切線方程為:y-(1-ln2)=
1
2
(x-2)
即x-2y-ln4=0
(Ⅱ)當(dāng)x∈(0,+∞)時,f(x)≥ax-2恒成立,
a≤1+
1
x
-
lnx
x
,
g(x)=1+
1
x
-
lnx
x
,
則g′(x)=
lnx-2
x2
=0

即x=e2,
可得g(x)在(0,e2)上單調(diào)遞減,在(e2,+∞)上單調(diào)遞增,
g(x)min=g(e2)=1-
1
e2
,
a≤1-
1
e2
故實數(shù)a的取值范圍是(-∞,1-
1
e2
]
點評:本題綜合考察函數(shù)的單調(diào)性、導(dǎo)數(shù)的應(yīng)用以及恒成立問題,中等題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在公比大于1的等比數(shù)列{an}中,a3a7=72,a2+a8=27,則a12=( 。
A、96B、64C、72D、48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,b>0.若
3
是3a與32b的等比中項,則
2
a
+
1
b
的最小值為(  )
A、8
B、4
C、1
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(
3
sin2x+2,cosx),
n
=(1,2cosx),設(shè)函數(shù)f(x)=
m
n
-3.
(Ⅰ)求f(x)的單調(diào)增區(qū)間;
(Ⅱ)在△ABC中,a、b、c分別是角A、B、C的對邊,若f(A)=1,a=
3
,且b+c=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x+4
2-x
的定義域為A,函數(shù)g(x)=
1
a-|x-4|
的定義域為B,若A∩B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們將不與拋物線對稱軸平行或重合且與拋物線只有一個公共點的直線稱為拋物線的切線,這個公共點稱為切點.解決下列問題:已知拋物線x2=2py(p>0)上的點(x0,3)到焦點的距離等于4,直線l:y=kx+b與拋物線相交于不同的兩點A(x1,y1)、B(x2,y2),且|x2-x1|=h(h為定值).設(shè)線段AB的中點為D,與直線l:y=kx+b平行的拋物線的切點為C.
(1)求出拋物線方程,并寫出焦點坐標(biāo)、準(zhǔn)線方程;
(2)用k、b表示出C點、D點的坐標(biāo),并證明CD垂直于x軸;
(3)求△ABC的面積,證明△ABC的面積與k、b無關(guān),只與h有關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x|x+a|-
1
2
lnx,若f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x∈R|x2+(2-a)x+1=0},集合B=(0,+∞),若A∩B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,且A={x|x<-1或x>2},B={y|y=x2+a},若∁uA⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案