【題目】設(shè)f(x)是定義在[1,+∞)的函數(shù),對任意正實(shí)數(shù)x,f(3x)=3f(x),且f(x)=1﹣|x﹣2|,1≤x≤3,則使得f(x)=f(2015)的最小實(shí)數(shù)x為( )
A.172
B.415
C.557
D.89
【答案】B
【解析】解:因?yàn)閒(x)對于所有的正實(shí)數(shù)x均有f(3x)=3f(x),
所以f(x)=3f( ),
所以f(2015)=3f( )=32f( )=…=3nf( ),
當(dāng)n=6時(shí), ∈(1,3),
所以f(2015)=36[1﹣ +2]=37﹣2015=172,
同理f(x)=3nf( )= = ,(n∈N*)
∵f(2)=1,∴f(6)=3f(2)=3,f(18)=3f(6)=32=9,
f(54)=3f(18)=33=27,f(162)=3f(54)=34=81,
f(486)=3f(162)=35=243,
即此時(shí)由f(x)=35f( )=35( ﹣1)=x﹣35=172
得x=35+172=243+172=415,
即使得f(x)=f(2015)的最小實(shí)數(shù)x為415,
所以答案是:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣(a﹣2)x+a﹣4;
(1)若函數(shù)y=f(x)在區(qū)間[1,2]上的最小值為4﹣a,求實(shí)數(shù)a的取值范圍;
(2)是否存在整數(shù)m,n,使得關(guān)于x的不等式m≤f(x)≤n的解集恰好為[m,n],若存在,求出m,n的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知離心率為 的橢圓C: + =1(a>b>0)過點(diǎn)M(2,1),O為坐標(biāo)原點(diǎn),平行于OM的直線l交橢圓C于不同的兩點(diǎn)A、B.
(1)求橢圓C的方程.
(2)證明:直線MA、MB與x軸圍成一個(gè)等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為 ,且過點(diǎn)D(2,0).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn) ,若P是橢圓上的動點(diǎn),求線段PA的中點(diǎn)M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)f(x)=(﹣2m2+m+2)xm+1為偶函數(shù).
(1)求f(x)的解析式;
(2)若函數(shù)y=f(x)﹣2(a﹣1)x+1在區(qū)間(2,3)上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩船駛向一個(gè)不能同時(shí)停泊兩艘船的碼頭,它們在一天二十四小時(shí)內(nèi)到達(dá)該碼頭的時(shí)刻是等可能的.如果甲船停泊時(shí)間為1小時(shí),乙船停泊時(shí)間為2小時(shí),求它們中的任意一艘都不需要等待碼頭空出的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了得到函數(shù) ,x∈R的圖象,只需把函數(shù)y=2sinx,x∈R的圖象上所有的點(diǎn)( )
A.向左平移 個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的 倍縱坐標(biāo)不變)
B.向右平移 個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變)
C.向左平移 個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變)
D.向右平移 個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com