【題目】在平面直角坐標(biāo)系xOy中,直線l: (t為參數(shù)),與曲線C: (k為參數(shù))交于A,B兩點(diǎn),求線段AB的長.
【答案】解:(方法一)直線l的參數(shù)方程化為普通方程得4x﹣3y=4, 將曲線C的參數(shù)方程化為普通方程得y2=4x.
聯(lián)立方程組 解得 ,或
所以A(4,4),B( ,﹣1).
所以AB═ .
(方法二)將曲線C的參數(shù)方程化為普通方程得y2=4x.
直線l的參數(shù)方程代入拋物線C的方程得 ( t)2=4(1+ ),即4t2﹣15t﹣25=0,
所以 t1+t2= ,t1t2=﹣
所以AB=|t1﹣t2|= =
【解析】方法一:直線l的參數(shù)方程化為普通方程得4x﹣3y=4,將曲線C的參數(shù)方程化為普通方程得y2=4x.聯(lián)立求出交點(diǎn)坐標(biāo),利用兩點(diǎn)之間的距離公式即可得出.方法二:將曲線C的參數(shù)方程化為普通方程得y2=4x. 直線l的參數(shù)方程代入拋物線C的方程得 4t2﹣15t﹣25=0,利用AB=|t1﹣t2|= 即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,焦點(diǎn)在x軸上的橢圓C: =1經(jīng)過點(diǎn)(b,2e),其中e為橢圓C的離心率.過點(diǎn)T(1,0)作斜率為k(k>0)的直線l交橢圓C于A,B兩點(diǎn)(A在x軸下方).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)O且平行于l的直線交橢圓C于點(diǎn)M,N,求 的值;
(3)記直線l與y軸的交點(diǎn)為P.若 = ,求直線l的斜率k.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求滿足的的取值:
(2)若函數(shù)是定義在上的奇函數(shù)
①存在,不等式有解,求的取值范圍;
②若函數(shù)滿足,若對(duì)任意,不等式恒成立,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.己知
點(diǎn)的極坐標(biāo)為,曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為, (為參數(shù)).曲線和曲線相交于兩點(diǎn).
(1)求點(diǎn)的直角坐標(biāo);
(2)求曲線的直角坐標(biāo)方程和曲線的普通方程;
(3)求的面枳,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點(diǎn)A,C在圓O上,B在圓外,線段AB與圓O交于點(diǎn)M.
(1)若BC是圓O的切線,且AB=8,BC=4,求線段AM的長度;
(2)若線段BC與圓O交于另一點(diǎn)N,且AB=2AC,求證:BN=2MN.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若在區(qū)間上是單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;
(2)若在處有極值10,求的值;
(3)若對(duì)任意的,有恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說:“是或作品獲得一等獎(jiǎng)”;
乙說:“作品獲得一等獎(jiǎng)”;
丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說:“是作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1 , F2分別是長軸長為 的橢圓C: 的左右焦點(diǎn),A1 , A2是橢圓C的左右頂點(diǎn),P為橢圓上異于A1 , A2的一個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)M為線段PA2的中點(diǎn),且直線PA2與OM的斜率之積恒為﹣ .
(1)求橢圓C的方程;
(2)設(shè)過點(diǎn)F1且不與坐標(biāo)軸垂直的直線C(2,2,0)交橢圓于A,B兩點(diǎn),線段AB的垂直平分線與B(2,0,0)軸交于點(diǎn)N,點(diǎn)N橫坐標(biāo)的取值范圍是 ,求線段AB長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=sin2x的圖象沿x軸向右平移φ(φ>0)個(gè)單位長度后得到函數(shù)g(x)的圖象,若函數(shù)g(x)的圖象關(guān)于y軸對(duì)稱,則當(dāng)φ取最小的值時(shí),g(0)= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com