已知數(shù)列{ }、{ }滿足:.
(1)求          
(2)證明:數(shù)列{}為等差數(shù)列,并求數(shù)列和{ }的通項(xiàng)公式;
(3)設(shè),求實(shí)數(shù)為何值時(shí) 恒成立.
(1);(2)證明見(jiàn)解析,,;(3)≤1.

試題分析:(1)遞推依次求得;(2)可得,化簡(jiǎn)可證為等差數(shù)列,求出通項(xiàng)公式,進(jìn)而求出和{ }的通項(xiàng)公式;(3)裂項(xiàng)法可求,則代入 ,將原不等式恒成立轉(zhuǎn)化為,利用一元二次函數(shù)知識(shí)可得≤1.
解:(1) ∵,∴;        4分
(2)∵
,,
 , ∴ 數(shù)列{}是以4為首項(xiàng),1為公差的等差數(shù)列,   6分
, ,  ∴ ;         8分
(3)  , ∴,
,        10分
由條件可知恒成立即可滿足條件,
設(shè),
當(dāng)=1時(shí),恒成立,
當(dāng) >1時(shí),由二次函數(shù)的性質(zhì)知不可能成立,
當(dāng)<l時(shí),對(duì)稱軸 ,              13分
f(n)在為單調(diào)遞減函數(shù),    ,
    ∴<1時(shí)恒成立,             
綜上知:≤1時(shí),恒成立.   14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列,滿足,,,數(shù)列的前項(xiàng)和為,.
(1)求數(shù)列的通項(xiàng)公式;
(2)求證:;
(3)求證:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在等差數(shù)列中,,.令,數(shù)列的前項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式和;
(2)是否存在正整數(shù)),使得,,成等比數(shù)列?若存在,求出所有
的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

假設(shè)你有一筆資金用于投資,現(xiàn)有三種投資方案供你選擇,這三種方案的回報(bào)如下:
方案一:每天回報(bào)40元;
方案二:第一天回報(bào)10元,以后每天的回報(bào)比前一天多回報(bào)10元;
方案三:第一天回報(bào)0.4元,以后每天的回報(bào)是前一天的兩倍.
若投資的時(shí)間為天,為使投資的回報(bào)最多,你會(huì)選擇哪種方案投資?(   )
A.方案一B.方案二C.方案三D.都可以

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將1,2,…,9這9個(gè)數(shù)平均分成三組,則每組的三個(gè)數(shù)都可以成等差數(shù)列的概率為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等差數(shù)列{an}中,是它的前n項(xiàng)和.若S16>0,且,則當(dāng)最大時(shí)n的值為(  )
A.8 B.9C.10 D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等差數(shù)列中,若是方程的兩個(gè)根,那么的值為(    )
A.B.C.12D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)an=sin,,在中,正數(shù)的個(gè)數(shù)是(   )
A.25
B.50
C.75
D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知數(shù)列{an}的通項(xiàng)公式為an= (-1)n n,則a4=_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案