12.(1)如果$cos(π-x)=\frac{{\sqrt{3}}}{2}$,x∈(0,π],求x的值
(2)已知tanα=2,求2sin2α-3sinαcosα-2cos2α的值.

分析 (1)根據(jù)誘導(dǎo)公式化簡和特殊三角函數(shù)值可得x的值
(2)利用弦化切的思想即可求解.

解答 解:(1)由$cos(π-x)=\frac{{\sqrt{3}}}{2}$,
可得:cosx=$-\frac{\sqrt{3}}{2}$
∵x∈(0,π],
∴x=$\frac{5π}{6}$.
(2)∵tanα=2,
∴2sin2α-3sinαcosα-2cos2α=$\frac{2si{n}^{2}α-3sinαcosα-2co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$=$\frac{2ta{n}^{2}α-3tanα-2}{1+ta{n}^{2}α}$=$\frac{2×4-6-2}{1+4}=0$.

點(diǎn)評 本題考查了誘導(dǎo)公式化簡和特殊三角函數(shù)值計算,弦化切的思想的運(yùn)用.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

同步練習(xí)冊答案