A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{4}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
分析 過O作A′B′的平行線,交B′C′于E,則O到平面ABC′D′的距離即為E到平面ABC′D′的距離.作EF⊥BC′于F,可得EF⊥平面ABC′D′,進(jìn)而根據(jù)EF=$\frac{1}{4}$B′C,求得EF.
解答 解:過O作A′B′的平行線,交B′C′于E,
則O到平面ABC′D′的距離即為E到平面ABC′D′的距離.
作EF⊥BC′于F,可得EF⊥平面ABC′D′,
從而EF=$\frac{1}{4}$B′C=$\frac{\sqrt{2}}{4}$.
故選B.
點(diǎn)評 本題主要考查了點(diǎn)到面的距離計(jì)算.解題的關(guān)鍵是找到點(diǎn)到面的垂線,即點(diǎn)到面的距離.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 不存在x0∈R,${x_0}^2-2{x_0}+1≥0$ | B. | 存在x0∈R,${x_0}^2-2{x_0}+1≤0$ | ||
C. | 存在x0∈R,${x_0}^2-2{x_0}+1<0$ | D. | 對任意的x∈R,x2-2x+1<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 524 | B. | 260 | C. | 256 | D. | 774 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com