在平面直角坐標(biāo)系中,直線(為參數(shù))與圓(為參數(shù))相切,切點(diǎn)在第一象限,則實(shí)數(shù)的值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知與⊙O相切,為切點(diǎn),過點(diǎn)的割線交圓于、兩點(diǎn),弦∥,、相交于點(diǎn),為上一點(diǎn),且.
(1)求證:;
(2)若,,,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓C0:(a>b>0,a,b為常數(shù)),動(dòng)圓C1:x2+y2=t12,b<t1<a.點(diǎn)A1,A2分別為C0的左,右頂點(diǎn),C1與C0相交于A,B,C,D四點(diǎn).
(1)求直線AA1與直線A2B交點(diǎn)M的軌跡方程;
(2)設(shè)動(dòng)圓C2:x2+y2=t22與C0相交于A′,B′,C′,D′四點(diǎn),其中b<t2<a,t1≠t2.若矩形ABCD與矩形A′B′C′D′的面積相等,證明:t12+t22為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C的方程為:x2+y2-2mx-2y+4m-4=0(m∈R).
(1)試求m的值,使圓C的面積最;
(2)求與滿足(1)中條件的圓C相切,且過點(diǎn)(1,-2)的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)在圓上運(yùn)動(dòng),,點(diǎn)為線段MN的中點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)求點(diǎn)到直線的距離的最大值和最小值..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線l1、l2分別與拋物線x2=4y相切于點(diǎn)A、B,且A、B兩點(diǎn)的橫坐標(biāo)分別為a、b(a、b∈R).
(1)求直線l1、l2的方程;
(2)若l1、l2與x軸分別交于P、Q,且l1、l2交于點(diǎn)R,經(jīng)過P、Q、R三點(diǎn)作圓C.
①當(dāng)a=4,b=-2時(shí),求圓C的方程;
②當(dāng)a,b變化時(shí),圓C是否過定點(diǎn)?若是,求出所有定點(diǎn)坐標(biāo);若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓M過兩點(diǎn)A(1,-1),B(-1,1),且圓心M在x+y-2=0上.
(1)求圓M的方程;
(2)設(shè)P是直線3x+4y+8=0上的動(dòng)點(diǎn),PA′、PB′是圓M的兩條切線,A′、B′為切點(diǎn),求四邊形PA′MB′面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓的方程為,點(diǎn)是坐標(biāo)原點(diǎn).直線與圓交于兩點(diǎn).
(1)求的取值范圍;
(2)過作圓的弦,求最小弦長(zhǎng)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com