(本題滿分14分)
已知點及圓:.
(Ⅰ)若直線過點且與圓心的距離為1,求直線的方程;
(Ⅱ)設過直線與圓交于、兩點,當時,求以為直徑的圓的方程;
(Ⅲ)設直線與圓交于,兩點,是否存在實數,使得過點的直線 垂直平分弦?若存在,求出實數的值;若不存在,請說明理由.
(Ⅰ)或;(Ⅱ).(Ⅲ)不存在實數,使得過點的直線垂直平分弦.
解析試題分析:(Ⅰ)圓C的圓心為,半徑, 1分
設直線的斜率為(存在)則方程為.
由 ,解得. 3分
所以直線方程為,即 . 4分
當的斜率不存在時,的方程為,經驗證也滿足條件. 5分
(Ⅱ)由于,而弦心距, 7分
所以.所以為的中點.
故以為直徑的圓的方程為. 9分
(Ⅲ)把直線即.代入圓的方程,
消去,整理得.
由于直線交圓于兩點,
故,即,解得. 11分
則實數的取值范圍是.設符合條件的實數存在,
由于垂直平分弦,故圓心必在上.
所以的斜率,而,所以. 13分
由于,
故不存在實數,使得過點的直線垂直平分弦. 14分
考點:本題考查了直線與圓的位置關系
點評:直線和圓的位置關系時除了用代數的方法外,還常常用到圓的幾何性質,屬基礎
科目:高中數學 來源:2012-2013學年吉林省高三第一次月考文科數學試卷(解析版) 題型:解答題
(本題滿分14分)已知函數
(1)若,求x的值;
(2)若對于恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2010-2011學年廣東省惠州市高三第三次調研考試數學理卷 題型:解答題
(本題滿分14分)
已知橢圓:的離心率為,過坐標原點且斜率為的直線與相交于、,.
⑴求、的值;
⑵若動圓與橢圓和直線都沒有公共點,試求的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2010-2011學年廣東省惠州市高三第三次調研考試數學理卷 題型:解答題
((本題滿分14分)
已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE = x,G是BC的中點.沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).
(1)當x=2時,求證:BD⊥EG ;
(2)若以F、B、C、D為頂點的三棱錐的體積記為,
求的最大值;
(3)當取得最大值時,求二面角D-BF-C的余弦值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com