【題目】廣場(chǎng)舞是現(xiàn)代城市群眾文化、娛樂(lè)發(fā)展的產(chǎn)物,也是城市精神文明建設(shè)成果的一個(gè)重要象征.2018年某校社會(huì)實(shí)踐小組對(duì)某小區(qū)廣場(chǎng)舞的開(kāi)展?fàn)顩r進(jìn)行了年齡的調(diào)查,隨機(jī)抽取了40名廣場(chǎng)舞者進(jìn)行調(diào)查,將他們年齡分成6段:,,,,后得到如圖所示的頻率分布直方圖.

1)根據(jù)廣場(chǎng)舞者年齡的頻率分布直方圖,估計(jì)廣場(chǎng)舞者的平均年齡;

2)若從年齡在內(nèi)的廣場(chǎng)舞者中任取2名,求選中的兩人中恰有一人年齡在內(nèi)的概率.

【答案】154歲;(2.

【解析】

1)根據(jù)頻率分布直方圖提供的數(shù)據(jù),代入平均數(shù)公式求解.

2)這是一個(gè)古典概型,由直方圖可知,年齡在內(nèi)的有2人,在內(nèi)的有4人,列出從從這6人中任選兩人所有可能基本事件的個(gè)數(shù),再找出選中的兩人中恰有一人年齡在內(nèi)的基本事件的個(gè)數(shù),代入公式求解.

1)廣場(chǎng)舞者的平均年齡為:

,

所以廣場(chǎng)舞者的平均年齡大約為54歲;

2)記事件從年齡在內(nèi)的廣場(chǎng)舞者中任取2名,選中的兩人中恰有一人年齡在內(nèi)”.

由直方圖可知,年齡在內(nèi)的有2人,分別記為,在內(nèi)的有4人,分別記為,,,

現(xiàn)從這6人中任選兩人,所有可能基本事件有:

,,,,,,,,,,,共15個(gè),

事件包含的基本事件有,,,,8個(gè),

所以

故從年齡在內(nèi)的廣場(chǎng)舞者中任取2名,選中的兩人中恰有一人年齡在內(nèi)的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,橢圓C的離心率是,拋物線E的焦點(diǎn)FC的一個(gè)頂點(diǎn).

)求橢圓C的方程;

)設(shè)PE上的動(dòng)點(diǎn),且位于第一象限,E在點(diǎn)P處的切線C交與不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為D,直線OD與過(guò)P且垂直于x軸的直線交于點(diǎn)M.

)求證:點(diǎn)M在定直線上;

)直線y軸交于點(diǎn)G,記的面積為,的面積為,求的最大值及取得最大值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】南北朝時(shí)代的偉大科學(xué)家祖暅在數(shù)學(xué)上有突出貢獻(xiàn),他在實(shí)踐的基礎(chǔ)上提出祖暅原理:冪勢(shì)既同,則積不容異”. 其含義是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平行平面的任意平面α所截,如果截得的兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等.如圖,夾在兩個(gè)平行平面之間的兩個(gè)幾何體的體積分別為V1,V2,被平行于這兩個(gè)平面的任意平面截得的兩個(gè)截面面積分別為S1,S2,則(

A.如果S1,S2總相等,則V1=V2

B.如果S1=S2總相等,則V1V2不一定相等

C.如果V1=V2 ,則S1,S2總相等

D.存在這樣一個(gè)平面α使S1=S2相等,則V1=V2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)某研究小組在電腦上進(jìn)行人工降雨模擬實(shí)驗(yàn),準(zhǔn)備用A、B、C三種人工降雨方式分別對(duì)甲、乙、丙三地實(shí)施人工降雨,其實(shí)驗(yàn)數(shù)據(jù)統(tǒng)計(jì)如下:

方式

實(shí)施地點(diǎn)

大雨

中雨

小雨

模擬實(shí)驗(yàn)總次數(shù)

A

4

6

2

12

B

3

6

3

12

C

2

2

8

12

假定對(duì)甲、乙、丙三地實(shí)施的人工降雨彼此互不影響,請(qǐng)你根據(jù)人工降雨模擬實(shí)驗(yàn)的統(tǒng)計(jì)數(shù)據(jù):

(1)求甲、乙、丙三地都恰為中雨的概率;

(2)考慮到旱情和水土流失,如果甲地恰需中雨即達(dá)到理想狀態(tài),乙地必須是大雨才達(dá)到理想狀態(tài),丙地只要是小雨或中雨即達(dá)到理想狀態(tài),記甲、乙、丙三地中達(dá)到理想狀態(tài)的個(gè)數(shù)為隨機(jī)變量ξ,求隨機(jī)變量ξ的分布列和均值E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是圓O的直徑,PA垂直于圓O所在的平面,M是圓周上任意一點(diǎn),ANPM,垂足為N , AEPB,垂足為E .

1)求證:平面PAM⊥平面PBM.

2)求證:是二面角A-PB-M的平面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某基地蔬菜大棚采用水培、無(wú)土栽培方式種植各類蔬菜過(guò)去50周的資料顯示,該地周光照量(小時(shí))都在30小時(shí)以上,其中不足50小時(shí)的周數(shù)有5周,不低于50小時(shí)且不超過(guò)70小時(shí)的周數(shù)有35周,超過(guò)70小時(shí)的周數(shù)有10周.根據(jù)統(tǒng)計(jì),該基地的西紅柿增加量(百斤)與使用某種液體肥料(千克)之間對(duì)應(yīng)數(shù)據(jù)為如圖所示的折線圖

(1)依據(jù)數(shù)據(jù)的折線圖,是否可用線性回歸模型擬合的關(guān)系?請(qǐng)計(jì)算相關(guān)系數(shù)并加以說(shuō)明(精確到0.01).(,則線性相關(guān)程度很高,可用線性回歸模型擬合)

(2)蔬菜大棚對(duì)光照要求較大,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀最多可運(yùn)行臺(tái)數(shù)受周光照量限制,并有如下關(guān)系:

周光照量(單位:小時(shí))

光照控制儀最多可運(yùn)行臺(tái)數(shù)

3

2

1

若某臺(tái)光照控制儀運(yùn)行,則該臺(tái)光照控制儀周利潤(rùn)為3000元;若某臺(tái)光照控制儀未運(yùn)行,則該臺(tái)光照控制儀周虧損1000元若商家安裝了3臺(tái)光照控制儀,求商家在過(guò)去50周周總利潤(rùn)的平均值.

附:相關(guān)系數(shù)公式,參考數(shù)據(jù),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某投資公司計(jì)劃投資AB兩種金融產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資金額x的函數(shù)關(guān)系為,B產(chǎn)品的利潤(rùn)與投資金額x的函數(shù)關(guān)系為.(利潤(rùn)與投資金額單位:萬(wàn)元)

1)該公司已有100萬(wàn)元資金,并全部投入A,B兩種產(chǎn)品中,其中x萬(wàn)元資金投入A產(chǎn)品,試把A,B兩種產(chǎn)品利潤(rùn)總和表示為x的函數(shù),并寫出x的取值范圍.

2)怎樣分配這100萬(wàn)元資金,才能使公司獲得最大利潤(rùn)?其最大利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)如圖在三棱錐中, 分別為棱的中點(diǎn),已知,

求證(1)直線平面;

(2)平面 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出定義:若(其中m為整數(shù)),則m叫做與實(shí)數(shù)x親密的整數(shù)記作{x}m,在此基礎(chǔ)上給出下列關(guān)于函數(shù)的四個(gè)說(shuō)法:

①函數(shù)是增函數(shù);

②函數(shù)的圖象關(guān)于直線對(duì)稱;

③函數(shù)上單調(diào)遞增

④當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn),

其中說(shuō)法正確的序號(hào)是(

A.①②③B.②③④C.①②④D.①③④

查看答案和解析>>

同步練習(xí)冊(cè)答案