若沿△ABC三條邊的中位線折起能拼成一個(gè)三棱錐,則△ABC(  )
A、一定是等邊三角形
B、一定是銳角三角形
C、可以是直角三角形
D、可以是鈍角三角形
考點(diǎn):棱錐的結(jié)構(gòu)特征,三角形的形狀判斷
專(zhuān)題:空間位置關(guān)系與距離
分析:在三棱錐的展開(kāi)圖中:過(guò)底面任意一個(gè)頂點(diǎn)的三個(gè)角,應(yīng)滿足∠1+∠2>∠3,其中∠3為底面三角形的內(nèi)角,進(jìn)而逐一分析△ABC為不同形狀時(shí)沿△ABC三條邊的中位線能否拼成一個(gè)三棱錐,最后綜合討論結(jié)果,可得答案.
解答: 解:在三棱錐的展開(kāi)圖中:

過(guò)底面任意一個(gè)頂點(diǎn)的三個(gè)角,應(yīng)滿足∠1+∠2>∠3,
當(dāng)△ABC為銳角三角形時(shí),

三個(gè)頂點(diǎn)處均滿足此條件,故能拼成一個(gè)三棱錐,
當(dāng)△ABC為銳角三角形時(shí),

在斜邊中點(diǎn)E處不滿足條件,故不能拼成一個(gè)三棱錐,
同理當(dāng)△ABC為鈍角三角形時(shí),
在鈍角所對(duì)邊中點(diǎn)處不滿足條件,故不能拼成一個(gè)三棱錐,
綜上可得:△ABC一定是銳角三角形,
故選:B
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是棱錐的結(jié)構(gòu)特征,三角形形狀的判斷,其中正確理解:三棱錐的展開(kāi)圖中,過(guò)底面任意一個(gè)頂點(diǎn)的三個(gè)角,應(yīng)滿足∠1+∠2>∠3,其中∠3為底面三角形的內(nèi)角,是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=cos2x+sin2x,x∈R的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一高為H、滿缸水量為V0的魚(yú)缸的軸截面如圖所示,其底部碰了一個(gè)小洞,滿缸水從洞中流出,若魚(yú)缸水深為h時(shí)水的體積為V,則函數(shù)的大致圖象可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)y=5sin3x的圖象向左平移π個(gè)單位,得到的圖象的解析式是( 。
A、y=5sin(3x+
π
3
B、y=5sin(3x-
π
3
C、y=5sin3x
D、y=-5sin3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直角三角形的斜邊長(zhǎng)為2,則其內(nèi)切圓半徑的最大值為( 。
A、
2
B、
2
-1
C、2
2
D、2(
2
-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cosα=-
3
5
,sinα=
4
5
,那么α的終邊所在的象限為( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a、b∈R,“a<b”是“2a<3b”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n(n+1)(n∈N*),
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an
(Ⅱ)數(shù)列{bn}的通項(xiàng)公式bn=
1
anan+1
,求數(shù)列{bn}的前n項(xiàng)和為T(mén)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一走廊拐角處的橫截面如圖所示,已知內(nèi)壁FG和外壁BC都是半徑為1m的四分之一圓弧,AB,DC分別與圓弧BC相切于B,C兩點(diǎn),EF∥AB,GH∥CD且兩組平行墻壁間的走廊寬度都是1m.
(1)若水平放置的木棒MN的兩個(gè)端點(diǎn)M,N分別在外壁CD和AB上,且木棒與內(nèi)壁圓弧相切于點(diǎn)P,設(shè)∠CMN=θ,若θ=
π
4
,試求出木棒MN的長(zhǎng)度a;
(2)若一根水平放置的木棒能通過(guò)該走廊拐角處,請(qǐng)問(wèn)木棒長(zhǎng)度能否大于a,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案