設(shè)函數(shù)f(x)=x3-3ax+b(a≠0).
(Ⅰ)若曲線y=f(x)在點(diǎn)(2,f(2))處與直線y=8相切,求a,b的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間與極值點(diǎn).
分析:(1)已知函數(shù)的解析式f(x)=x3-3ax+b,把點(diǎn)(2,f(2))代入,再根據(jù)f(x)在點(diǎn)(2,f(2))處與直線y=8相切,求出a,b的值;
(2)由題意先對(duì)函數(shù)y進(jìn)行求導(dǎo),解出極值點(diǎn),然后再根據(jù)極值點(diǎn)的值討論函數(shù)的增減性及其增減區(qū)間;
解答:解:(Ⅰ)f′(x)=3x
2-3a,
∵曲線y=f(x)在點(diǎn)(2,f(2))處與直線y=8相切,
∴
??(Ⅱ)∵f′(x)=3(x
2-a)(a≠0),
當(dāng)a<0時(shí),f′(x)>0,函數(shù)f(x)在(-∞,+∞)上單調(diào)遞增,此時(shí)函數(shù)f(x)沒有極值點(diǎn).
當(dāng)a>0時(shí),由
f′(x)=0?x=±,
當(dāng)
x∈(-∞,-)時(shí),f′(x)>0,函數(shù)f(x)單調(diào)遞增,
當(dāng)
x∈(-,)時(shí),f′(x)<0,函數(shù)f(x)單調(diào)遞減,
當(dāng)
x∈(,+∞)時(shí),f′(x)>0,函數(shù)f(x)單調(diào)遞增,
∴此時(shí)
x=-是f(x)的極大值點(diǎn),
x=是f(x)的極小值點(diǎn).
點(diǎn)評(píng):本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值、解不等式等基礎(chǔ)知識(shí),考查綜合分析和解決問題的能力.