【題目】已知函數(shù)的定義域?yàn)?/span>,值域是.

(Ⅰ)求證: ;

(Ⅱ)求實(shí)數(shù)的取值范圍.

【答案】() 見(jiàn)解析() .

【解析】試題分析:(1)根據(jù)已知函數(shù)求出定義域,則為已知函數(shù)所求出的x的范圍的子集,再利用所提供的值域得出m>1,n>1的要求,從而說(shuō)明m>3(2)根據(jù)復(fù)合函數(shù)的單調(diào)性法則,由于對(duì)數(shù)的底數(shù)0<a<1,以及的單調(diào)性判斷出原函數(shù)f(x)上為增函數(shù),根據(jù)已知定義域和值域及函數(shù)的單調(diào)性,寫(xiě)出x值與y值的對(duì)應(yīng)關(guān)系式,得出列方程組,把問(wèn)題轉(zhuǎn)化為一元二次方程存在兩個(gè)大于3的實(shí)根問(wèn)題,最后利用根的分布條件列出不等式組解出a的范圍.

試題解析:

() ,又因?yàn)楹瘮?shù)的定義域,可得,

而函數(shù)的值域?yàn)?/span>,由對(duì)數(shù)函數(shù)的性質(zhì)知

,

() 在區(qū)間上遞增,又因?yàn)?/span>

單調(diào)遞減的函數(shù).

有兩個(gè)大于3的實(shí)數(shù)根,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達(dá)圖.圖中A點(diǎn)表示十月的平均最高氣溫約為15℃B點(diǎn)表示四月的平均最低氣溫約為5℃下面敘述不正確的是 ( )

A. 各月的平均最低氣溫都在0℃以上

B. 七月的平均溫差比一月的平均溫差大

C. 三月和十一月的平均最高氣溫基本相同

D. 平均最高氣溫高于20℃的月份有5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C1 (t為參數(shù)),C2 (θ為參數(shù)).若曲線C1上的點(diǎn)P對(duì)應(yīng)的參數(shù)為t,Q為曲線C2上的動(dòng)點(diǎn),則線段PQ的中點(diǎn)M到直線C3 (t為參數(shù))距離的最小值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知xy之間的幾組數(shù)據(jù)如下表:

x

1

2

3

4

5

6

y

0

2

1

3

3

4

假設(shè)根據(jù)上表數(shù)據(jù)所得的線性回歸方程為x.若某同學(xué)根據(jù)上表中的前兩組數(shù)據(jù)(1,0)和(2,2)求得的直線方程為ybxa′,則以下結(jié)論正確的是(  )

A. >b′,>a B. >b′,<a

C. <b′,>a D. <b′,<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代稱(chēng)直角三角形為勾股形,并且直角邊中較小者為勾,另一直角邊為股,斜邊為弦.若ab,c為直角三角形的三邊,其中c為斜邊,則a2b2c2,稱(chēng)這個(gè)定理為勾股定理.現(xiàn)將這一定理推廣到立體幾何中:在四面體OABC中,∠AOBBOCCOA90°,S為頂點(diǎn)O所對(duì)面的面積,S1,S2S3分別為側(cè)面OAB,OAC,OBC的面積,則下列選項(xiàng)中對(duì)于S,S1,S2,S3滿足的關(guān)系描述正確的為(  )

A. S2SSS B.

C. SS1S2S3 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)方程2xx+2=0和方程log2xx+2=0的根分別為pq,函數(shù)f(x)=(xp)·(xq)+2,則(  )

A. f(2)=f(0)<f(3) B. f(0)<f(2)<f(3)

C. f(3)<f(0)=f(2) D. f(0)<f(3)<f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù) .

(1)當(dāng)時(shí),討論的單調(diào)性;

(2)若函數(shù)有兩個(gè)極值點(diǎn),且,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司研制出了一種新產(chǎn)品,試制了一批樣品分別在國(guó)內(nèi)和國(guó)外上市銷(xiāo)售,并且價(jià)格根據(jù)銷(xiāo)售情況不斷進(jìn)行調(diào)整,結(jié)果40天內(nèi)全部銷(xiāo)完.公司對(duì)銷(xiāo)售及銷(xiāo)售利潤(rùn)進(jìn)行了調(diào)研,結(jié)果如圖所示,其中圖①(一條折線)、圖②(一條拋物線段)分別是國(guó)外和國(guó)內(nèi)市場(chǎng)的日銷(xiāo)售量與上市時(shí)間的關(guān)系,圖③是每件樣品的銷(xiāo)售利潤(rùn)與上市時(shí)間的關(guān)系.

(1)分別寫(xiě)出國(guó)外市場(chǎng)的日銷(xiāo)售量f(t)與上市時(shí)間t的關(guān)系及國(guó)內(nèi)市場(chǎng)的日銷(xiāo)售量g(t)與上市時(shí)間t的關(guān)系;

(2)國(guó)外和國(guó)內(nèi)的日銷(xiāo)售利潤(rùn)之和有沒(méi)有可能恰好等于6 300萬(wàn)元?若有,請(qǐng)說(shuō)明是上市后的第幾天;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)圖象上一點(diǎn)處的切線方程為.

(1)求的值;

(2)若方程內(nèi)有兩個(gè)不等實(shí)根,求的取值范圍(其中

為自然對(duì)數(shù)的底).

查看答案和解析>>

同步練習(xí)冊(cè)答案