雙曲線過其左焦點(diǎn)F1作x軸的垂線交雙曲線于A,B兩點(diǎn),若雙曲線右頂點(diǎn)在以AB為直徑的圓內(nèi),則雙曲線離心率的取值范圍為

A.(2,+∞)                            B.(1,2)

C.(,+∞)                           D.(1,

 

【答案】

A

【解析】

試題分析:如圖,令,由于雙曲線右頂點(diǎn)在以AB為直徑的圓內(nèi),而右頂點(diǎn)到左焦點(diǎn)的距離為,則。由于點(diǎn)B在雙曲線上,故,化為,所以,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013071912425896343947/SYS201307191243140474855846_DA.files/image007.png">,所以,解得。故選A。

考點(diǎn):雙曲線的性質(zhì)

點(diǎn)評:解決雙曲線的問題,有時(shí)要用到雙曲線的特點(diǎn):雙曲線上的點(diǎn)到兩焦點(diǎn)的距離之差的絕對值是為2a.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
7
=1
,直線l過其左焦點(diǎn)F1,交雙曲線的左支于A、B兩點(diǎn),且|AB|=4,F(xiàn)2為雙曲線的右焦點(diǎn),△ABF2的周長為20,則此雙曲線的離心率e=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
m
-
y2
7
=1
,直線l過其左焦點(diǎn)F1,交雙曲線左支于A、B兩點(diǎn),且|AB|=4,F(xiàn)2為雙曲線的右焦點(diǎn),△ABF2的周長為20,則m的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•河北區(qū)一模)已知橢圓C的方程為 
x2
a2
+
y2
b2
=1 
(a>b>0),過其左焦點(diǎn)F1(-1,0)斜率為1的直線交橢圓于P、Q兩點(diǎn).
(Ⅰ)若
OP
+
OQ
a
=(-3,1)共線,求橢圓C的方程;
(Ⅱ)已知直線l:x+y-
1
2
=0,在l上求一點(diǎn)M,使以橢圓的焦點(diǎn)為焦點(diǎn)且過M點(diǎn)的雙曲線E的實(shí)軸最長,求點(diǎn)M的坐標(biāo)和此雙曲線E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0),過其左焦點(diǎn)F1作x軸的垂線交雙曲線于A、B兩點(diǎn),若雙曲線右頂點(diǎn)在以AB為直徑的圓內(nèi),則雙曲線離心離的取值范圍為( 。
A、(2,+∞)
B、(1,2)
C、(
3
2
,+∞)
D、(1,
3
2

查看答案和解析>>

同步練習(xí)冊答案