的最小值是( )
A.-
B.-2
C.
D.
【答案】分析:先進行配方找出對稱軸,而-1≤cosx≤1,利用對稱軸與區(qū)間的位置關(guān)系求出最小值.
解答:解:=(cosx-2-
∵-1≤cosx≤1
∴當cosx=1時,ymin=-
故選A
點評:本題以三角函數(shù)為載體考查二次函數(shù)的值域,屬于求二次函數(shù)的最值問題,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

關(guān)于函數(shù)f(x)=sin2x-(
2
3
|x|+
1
2
,有下面四個結(jié)論,其中正確結(jié)論的個數(shù)為( 。
①f(x)是奇函數(shù)②當x>2003時,f(x)>
1
2
恒成立③f(x)的最大值是
3
2
④f(x)的最小值是-
1
2
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x2-(2a-4)x-3在[1,3]上的最小值是g(a),求g(a)的函數(shù)表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖(1)直線l∥AB,且與CA,CB分別相交于點E,F(xiàn),EF與AB間的距離是d,點P是線段EF上任意一點,Q是線段AB上任意一點,則|PQ|的最小值等于d.類比上述結(jié)論我們可以得到:在圖(2)中,平面α∥平面ABC,且與DA,DB,DC分別相交于點E,F(xiàn),G,平面α與平面ABC間的距離是m,
a,b分別是平面α與平面ABC內(nèi)的任意一條直線,則a,b間距離的最小值是m.
或P,Q分別是平面α與平面ABC內(nèi)的任意一點,則P,Q間距離的最小值是m.
a,b分別是平面α與平面ABC內(nèi)的任意一條直線,則a,b間距離的最小值是m.
或P,Q分別是平面α與平面ABC內(nèi)的任意一點,則P,Q間距離的最小值是m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)設(shè)函數(shù)y=mx2-mx-1.若對于一切實數(shù)x,y<0恒成立,求m的取值范圍;?
(2)已知函數(shù)f(x)=2x2-2ax+3在區(qū)間[-1,1]上的最小值是g(a),求g(a)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y=2x2-2ax+3在區(qū)間[-1,1]上的最小值是f(a),試求f(a)的解析式,并說明當a∈[-2,1]時,g(a)=log
12
f(a)
的單調(diào)性.

查看答案和解析>>

同步練習冊答案