已知一個(gè)口袋中裝有n個(gè)紅球(n≥1且n∈N)和2個(gè)白球,從中有放回地連續(xù)摸三次,每次摸出兩個(gè)球,若兩個(gè)球顏色不同則為中獎(jiǎng),否則不中獎(jiǎng).

(1)當(dāng)n=3時(shí),設(shè)三次摸球中(每次摸球后放回)中獎(jiǎng)的次數(shù)為ξ,求的ξ分布列;

(2)記三次摸球中(每次摸球后放回)恰有兩次中獎(jiǎng)的概率為P,當(dāng)n取多少時(shí),P最大.

答案:
解析:

  解(1)當(dāng)時(shí),每次摸出兩個(gè)球,中獎(jiǎng)的概率

  ;

  ;;

  分布列為:

  (2)設(shè)每次摸獎(jiǎng)中獎(jiǎng)的概率為,則三次摸球(每次摸獎(jiǎng)后放回)恰有兩次中獎(jiǎng)的概率為:,,

  ,知在為增函數(shù),在為減函數(shù),當(dāng)時(shí)取得最大值.

  又解得


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

14、已知從裝有n+1個(gè)球(其中n個(gè)白球,1個(gè)黑球)的口袋中取出m個(gè)球(0<m<n,n,m∈N),共有Cn+1m種取法.在這Cn+1m種取法中,可以分成兩類:一類是取出的m個(gè)球全部為白球,另一類是取出一個(gè)黑球和(m-1)個(gè)白球,共有C10Cnm+C11Cnm-1種取法,即有等式Cnm+Cnm-1=Cn+1m成立.試根據(jù)上述思想,化簡下列式子:Cnm+Ck1Cnm-1+Ck2Cnm-2+…+CkkCnm-k=
Cn+km
.(1≤k<m≤n,k,m,n∈N)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)口袋中裝有n個(gè)紅球(n≥1且n∈N+)和2個(gè)白球,從中有放回連續(xù)摸三次,每次摸出2個(gè)球,若兩個(gè)球顏色不同,則為中獎(jiǎng).
(1)當(dāng)n=3時(shí),設(shè)中獎(jiǎng)次數(shù)為ζ,求ζ的分布列及期望;
(2)記三次摸球中,恰好兩次中獎(jiǎng)概率為P,當(dāng)n為多少時(shí),P有最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省景德鎮(zhèn)市昌江一中高三(上)第三次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知一個(gè)口袋中裝有n個(gè)紅球(n≥1且n∈N+)和2個(gè)白球,從中有放回連續(xù)摸三次,每次摸出2個(gè)球,若兩個(gè)球顏色不同,則為中獎(jiǎng).
(1)當(dāng)n=3時(shí),設(shè)中獎(jiǎng)次數(shù)為ζ,求ζ的分布列及期望;
(2)記三次摸球中,恰好兩次中獎(jiǎng)概率為P,當(dāng)n為多少時(shí),P有最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京市朝陽區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知從裝有n+1個(gè)球(其中n個(gè)白球,1個(gè)黑球)的口袋中取出m個(gè)球(0<m<n,n,m∈N),共有Cn+1m種取法.在這Cn+1m種取法中,可以分成兩類:一類是取出的m個(gè)球全部為白球,另一類是取出一個(gè)黑球和(m-1)個(gè)白球,共有C1Cnm+C11Cnm-1種取法,即有等式Cnm+Cnm-1=Cn+1m成立.試根據(jù)上述思想,化簡下列式子:Cnm+Ck1Cnm-1+Ck2Cnm-2+…+CkkCnm-k=    .(1≤k<m≤n,k,m,n∈N)

查看答案和解析>>

同步練習(xí)冊(cè)答案