【題目】將編號(hào)為1、2、3、4的四個(gè)小球隨機(jī)的放入編號(hào)為1、2、3、4的四個(gè)紙箱中,每個(gè)紙箱有且只有一個(gè)小球,稱此為一輪“放球”.設(shè)一輪“放球”后編號(hào)為的紙箱放入的小球編號(hào)為,定義吻合度誤差為
(1) 寫出吻合度誤差的可能值集合;
(2) 假設(shè)等可能地為1,2,3,4的各種排列,求吻合度誤差的分布列;
(3)某人連續(xù)進(jìn)行了四輪“放球”,若都滿足,試按(Ⅱ)中的結(jié)果,計(jì)算出現(xiàn)這種現(xiàn)象的概率(假定各輪“放球”相互獨(dú)立);
【答案】(1) .(2) 見解析(3)
【解析】試題分析:(1)根據(jù)題意知與的奇偶性相同,誤差只能是偶數(shù),由此寫出的可能取值;(2)用列舉法求出基本事件數(shù),利用古典概型概率公式計(jì)算對(duì)應(yīng)的概率值,寫出隨機(jī)變量的分布列;(3)利用互斥事件的概率公式計(jì)算 ,再利用對(duì)立事件的概率公式求解.
試題解析:(1) 由于在1、2、3、4中奇數(shù)與偶數(shù)各有兩個(gè),所以中的奇數(shù)的個(gè)數(shù)與中偶數(shù)的個(gè)數(shù)相同.因此, 與的奇偶性相同,從而吻合度誤差
只能是偶數(shù),又因?yàn)?/span>的值非負(fù)且值不大于8.因此,吻合度誤差的可能值集合.
(2)用表示編號(hào)為1、2、3、4的四個(gè)紙箱中放入的小球編號(hào)分別為,則所有可能的結(jié)果如下:
易得, , ,
,
于是,吻合度誤差的分布列如下:
0 | 2 | 4 | 6 | 8 | |
(3)首先,
由上述結(jié)果和獨(dú)立性假設(shè),可得出現(xiàn)這種現(xiàn)象的概率為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),且當(dāng)時(shí), ,則對(duì)任意,函數(shù)的零點(diǎn)個(gè)數(shù)至多有( )
A. 3個(gè) B. 4個(gè) C. 6個(gè) D. 9個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A,B,C,D為平面內(nèi)的四點(diǎn),且A(1,3),B(2,﹣2),C(4,1).
(1)若 = ,求D點(diǎn)的坐標(biāo);
(2)設(shè)向量 = , = ,若k ﹣ 與 +3 平行,求實(shí)數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c.己知asinA+csinC﹣ asinC=bsinB, (Ⅰ)求B;
(Ⅱ)若A=75°,b=2,求a,c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an=2Sn﹣1(n∈N*) (Ⅰ)求證:數(shù)列{an}為等比數(shù)列;
(Ⅱ)若bn=(2n+1)an , 求{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4;坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)中,曲線.
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程.
(Ⅱ)求曲線上的點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代號(hào)t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,討論函數(shù)的單調(diào)性;
(2)曲線與直線交于,兩點(diǎn),其中,若直線斜率為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將參加數(shù)學(xué)競(jìng)賽的1000名學(xué)生編號(hào)如下:0001,0002,0003,…,1000,打算從中抽取一個(gè)容量為50的樣本,按系統(tǒng)抽樣的辦法分成50個(gè)部分.如果第一部分編號(hào)為0001,0002,…,0020,從中隨機(jī)抽取一個(gè)號(hào)碼為0015,則第40個(gè)號(hào)碼為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com