已知圓O:x2+y2=1和點(diǎn)A(-2,0),若定點(diǎn)B(b,0)(b≠-2)和常數(shù)λ滿足:對(duì)圓O上任意一點(diǎn)M,都有|MB|=λ|MA|,則:
(Ⅰ)b=
 

(Ⅱ)λ=
 
考點(diǎn):三點(diǎn)共線
專題:直線與圓
分析:(Ⅰ)利用|MB|=λ|MA|,可得(x-b)2+y22(x+2)22y2,由題意,。1,0)、(-1,0)分別代入,即可求得b;
(Ⅱ)。1,0)、(-1,0)分別代入,即可求得λ.
解答: 解:解法一:設(shè)點(diǎn)M(cosθ,sinθ),則由|MB|=λ|MA|得(cosθ-b)2+sin2θ=λ2[(cosθ+2)2+sin2θ],即
-2bcosθ+b2+1=4λ2cosθ+5γ2對(duì)任意θ都成立,所以
-2b=4λ2
b2+1=5λ2
.又由|MB|=λ|MA|得λ>0,且b≠-2,解得
b=-
1
2
λ=
1
2

解法二:(Ⅰ)設(shè)M(x,y),則
∵|MB|=λ|MA|,
∴(x-b)2+y22(x+2)22y2,
由題意,取(1,0)、(-1,0)分別代入可得(1-b)22(1+2)2,(-1-b)22(-1+2)2,
∴b=-
1
2
,λ=
1
2

(Ⅱ)由(Ⅰ)知λ=
1
2

故答案為:-
1
2
,
1
2
點(diǎn)評(píng):本題考查圓的方程,考查賦值法的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,D,E,F(xiàn)分別為棱PC,AC,AB的中點(diǎn),已知PA⊥AC,PA=6,BC=8,DF=5.求證:
(1)直線PA∥平面DEF;
(2)平面BDE⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,BA=BD=
2
,AD=2,PA=PD=
5
,E,F(xiàn)分別是棱AD,PC的中點(diǎn).
(Ⅰ)證明EF∥平面PAB;
(Ⅱ)若二面角P-AD-B為60°,
(i)證明平面PBC⊥平面ABCD;
(ii)求直線EF與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[-2,2]內(nèi)任取一個(gè)元素x0,若拋物線y=x2在x=x0處的切線的傾斜角為α,則α∈[
π
3
,
3
]的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩套設(shè)備生產(chǎn)的同類型產(chǎn)品共4800件,采用分層抽樣的方法從中抽取一個(gè)容量為80的樣本進(jìn)行質(zhì)量檢測(cè),若樣本中有50件產(chǎn)品由甲設(shè)備生產(chǎn),則乙設(shè)備生產(chǎn)的產(chǎn)品總數(shù)為
 
件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上且周期為3的函數(shù),當(dāng)x∈[0,3)時(shí),f(x)=|x2-2x+
1
2
|,若函數(shù)y=f(x)-a在區(qū)間[-3,4]上有10個(gè)零點(diǎn)(互不相同),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩名運(yùn)動(dòng)員各自等可能地從紅、白、藍(lán)3種顏色的運(yùn)動(dòng)服中選擇1種,則他們選擇相同顏色運(yùn)動(dòng)服的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正三棱柱ABC-A1B1C1的底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為
3
,D為BC中點(diǎn),則三棱錐A-B1DC1的體積為( 。
A、3
B、
3
2
C、1
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某校隨機(jī)抽取100名學(xué)生,獲得了他們一周課外閱讀時(shí)間(單位:小時(shí))的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表和頻率分布直方圖:
排號(hào)分組頻數(shù)
1[0,2)6
2[2,4)8
3[4,6)17
4[6,8)22
5[8,10)25
6[10,12)12
7[12,14)6
8[14,16)2
9[16,18)2
合計(jì)100
(Ⅰ)從該校隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生該周課外閱讀時(shí)間少于12小時(shí)的概率;
(Ⅱ)求頻率分布直方圖中的a,b的值;
(Ⅲ)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,試估計(jì)樣本中的100名學(xué)生該周課外閱讀時(shí)間的平均數(shù)在第幾組(只需寫結(jié)論)

查看答案和解析>>

同步練習(xí)冊(cè)答案