精英家教網 > 高中數學 > 題目詳情

在△ABC中,角A,B,C所對的邊分別為a,b,c,向量m=數學公式,n=(cosA+1,sinA),且m∥n.
(Ⅰ)求角A的大;
(Ⅱ)若a=3,數學公式,求b的長.

解:(Ⅰ)由,得,因為0<A<π,所以,
(Ⅱ)在△ABC中,由,得,又由正弦定理,
解得,故b的長為 2
分析:(Ⅰ)利用兩個向量共線的性質可得 ,根據A的范圍求出A的大小.
(Ⅱ) 先求出sinB,利用正弦定理 求得b的長.
點評:本題考查正弦定理,兩個向量共線的性質,根據三角函數的值求角,求出角A的值,是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大。
(2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習冊答案