(本小題滿分12分)某單位組織4個(gè)部門的職工旅游,規(guī)定每個(gè)部門只能在韶山、衡山、張家界3個(gè)景區(qū)中任選一個(gè),假設(shè)各部門選擇每個(gè)景區(qū)是等可能的.

(1)是        3個(gè)景區(qū)都有部門選擇的概率是       

(2)求恰有2個(gè)景區(qū)有部門選擇的概率

 

【答案】

解:某單位的4個(gè)部門選擇3個(gè)景區(qū)可能出現(xiàn)的結(jié)果數(shù)為34.由于是任意選擇,這些結(jié)

果出現(xiàn)的可能性都相等. …………………………………2分

   (1)3個(gè)景區(qū)都有部門選擇可能出現(xiàn)的結(jié)果數(shù)為(從4個(gè)部門中任選2個(gè)作為1組,另外2個(gè)部門各作為1組,共3組,共有種分法,每組選擇不同的景區(qū),共有3!種選法),記“3個(gè)景區(qū)都有部門選擇”為事件A1,那么事件A1的概率為  P(A1)=…………………………………7分

   (2)解法1:分別記“恰有2個(gè)景區(qū)有部門選擇”和“4個(gè)部門都選擇同一個(gè)景區(qū)”為事件A2和A3,則事件A3的概率為P(A3)=,事件A2的概率為 P(A2)=1-P(A1)-P(A3)=………………………………12分

解法2:恰有2個(gè)景區(qū)有部門選擇的結(jié)果為(先從3個(gè)景區(qū)任意選定2個(gè),共有種選法,再讓4個(gè)部門來選擇這2個(gè)景區(qū),分兩種情況:第一種情況,從4個(gè)部門中任取1個(gè)作為1組,另外3個(gè)部門作為1組,共2組,每組選擇2個(gè)不同的景區(qū),共有種不同選法.第二種情況,從4個(gè)部門中任選2個(gè)部門到1個(gè)景區(qū),另外2個(gè)部門在另1個(gè)景區(qū),共有種不同選法).所以

P(A2)=………………………………12分

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬元.

查看答案和解析>>

同步練習(xí)冊(cè)答案